Scalable Discovery of Unique Column Combinations

Motivation

Large datasets at very fast rates:
- Social networks
- Scientific applications
- Transactional applications
- ...

Finding uniques is crucial for:
- Query optimization
- Anomaly detection
- Data modeling
- Indexing
- ...

Problem

- Unique column combinations often unknown in big datasets
- Exponential search space

Finding unique column combinations is an NP-Hard problem

DUCC

Modeled as graph coloring problem

Graph divided into uniques and non-uniques
- Minimal uniques summarize uniques
- Maximal non-uniques summarize non-uniques
- DUCC simultaneously detects (non-)uniques
- Completeness verified (proof in paper)

Random walk graph traversal

- Randomly pick next CC from current CC
- Go upwards if CC is non-unique
- Go downwards if CC is unique
- Trace back if no pruned CC is left
- Check for holes by comparing min uniques and max non-uniques

Modular architecture

- Worker receives next CC from traversal algorithm
- Performs fast check with PLI intersection
- Maintains pruning data structures
- Seed provider detects holes and calculates restart CC

Scalable architecture

- Workers exchange minimal uniques and maximal non-uniques
- Scale up with local event bus
- Scale out with distributed event bus (ZooKeeper)
- Fault-tolerance with Map-only Hadoop Job

Results

Scaling the Number of Columns on 100,000 Rows

<table>
<thead>
<tr>
<th>Number of Columns</th>
<th>Uniprot</th>
<th>HCA</th>
<th>NEMO</th>
<th>DUCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>30</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
</tr>
</tbody>
</table>

Scaling the Number of Rows on 15 Columns

<table>
<thead>
<tr>
<th>Number of Rows</th>
<th>Uniprot</th>
<th>HCA</th>
<th>NEMO</th>
<th>DUCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>100,000</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>200,000</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>300,000</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
</tbody>
</table>

Solution space and checks

- Gondran [Gondran: efficient and scalable discovery of composite keys. VLDB'06]
 - Row-based approach
 - Prefix-free data organization
- HCA: Advancing the discovery of unique column combinations. CIKM'11
 - Column-based approach
 - Histograms- and value-counting-based
- Swan: Detecting Unique Column Combinations on Dynamic Data. ICDE'14
 - Builds on top of DUCC
 - Focus on dealing with incremental data

Related Work

- Arvid Heise, Jorge-Amilcar Quiané-Ruiz, Ziaawad Abedjan, Anja Jentzsch, Felix Naumann

*Work done in the context of Metanome: joint project between HPI and QCRI that provides a fresh view on data profiling and aims at providing scalability for Big Data. Website: http://www.hpi.uni-potsdam.de/naumann/projekte/metanome_data_profiling.html