
Data Quality Problems beyond Consistency and Deduplication

Wenfei Fan Floris Geerts Shuai Ma Nan Tang Wenyuan Yu
University of Edinburgh

{wenfei@inf., fgeerts@inf., sma1@inf., ntang@inf., wenyuan.yu@}ed.ac.uk

Abstract

Recent work on data quality has primarily focused on data repairing algorithms for improving data
consistency and record matching methods for data deduplication. This paper accentuates several other
challenging issues that are essential to developing data cleaning systems, namely, error correction with
performance guarantees, unification of data repairing and record matching, relative information com-
pleteness, and data currency. We provide an overview of recent advances in the study of these issues,
and advocate the need for developing a logical framework for a uniform treatment of these issues.

1 Introduction
Data quality has been a longstanding line of research for decades [18]. It is estimated that dirty data costs US

companies alone 600 billion dollars each year [9]. With this comes the need for data cleaning systems to improve
data quality, and to add accuracy and value to business processes. As an example, data cleaning tools deliver “an
overall business value of more than 600 million GBP” each year at BT [29]. In light of this, the market for data
cleaning systems is growing at 17% annually, substantially outpacing the 7% average of other IT segments [19].

There has been a host of work on data quality. Recent work has primarily focused on two central issues:
• Recording matching: to identify tuples that refer to the same real-world entity [10], for data deduplication.
• Data repairing: to find a repair (database) that is consistent w.r.t. integrity constraints and minimally

differs from the original data, by detecting and fixing (semantic) errors, to improve data consistency [1].
Most data cleaning systems on the market support record matching, e.g., ETL tools (extraction, transformation,
loading; see [22] for a survey). Some prototype systems also provide a data repairing functionality [3,6,26,35].

There are other data quality issues that are not limited to algorithms for record matching or data repairing,
but are also essential to developing practical data cleaning systems. Unfortunately, these issues have not received
much attention from the research community. In particular, we highlight the following.

(1) Certain fixes. Prior data repairing methods are typically heuristic. They attempt to fix all the errors in the
data, but do not guarantee that fixes generated are correct. Worse still, new errors may be introduced when trying
to repair the data. In practice, we often want to find certain fixes, i.e., fixes that are guaranteed to be correct,
although we might not be able to fix all the errors in the data. The need for certain fixes is particularly evident
when repairing critical data, e.g., medical data, in which a seemingly minor error may mean life or death.

(2) Unification of data repairing and record matching. Data repairing and record matching are typically treated
as independent processes. However, the two processes often interact with each other: repairing helps us identify
matches, and vice versa. This suggests that we unify repairing and matching by interleaving their operations.

Copyright 0000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1



FN LN AC phn type str city zip item when where
t1: Bob Brady 020 079172485 2 null Edi EH7 4AH CD 7pm, 28/08/2010 UK
t2: Max Smith 131 6884593 1 5 Oak St Ldn EH8 9HL CD 06/11/2009 UK
t3: Mark Smith 131 6884563 1 null Edi null DVD 1pm, 06/11/2009 US

(a) Example input tuples t1 and t2

FN LN AC Hphn Mphn str city zip gender
s1: Robert Brady 131 6682845 079172485 51 Elm Row Edi EH7 4AH M
s2: Mark Smith 131 6884563 075568485 5 Oak St Edi EH8 9HL M

(b) Example master relation Dm

Figure 1: Example input tuples and master relation

(3) Information completeness. A data cleaning system should be able to tell us, given a database D and a query
Q, whether D has complete information to answer Q. If the information is missing from D, the answer to Q in
D is hardly sensible. Information completeness is as important as data consistency and deduplication. Indeed,
pieces of information perceived as being needed for clinical decisions were missing from 13.6% to 81% of the
time [27]. Traditionally we deal with this issue by adopting either the Closed World Assumption (CWA) or
the Open World Assumption (OWA). However, real-life databases are often neither entirely closed-world nor
entirely open-world. This asks for a revision of the CWA, OWA and the model of information completeness.

(4) Data currency. The quality of data in a real-life database quickly degenerates over time. It is estimated that
“2% of records in a customer file become obsolete in one month” [9]. That is, in a database of 500 000 customer
records, 10 000 records may go stale per month, 120 000 records per year, and within two years about 50% of
all the records may be obsolete. As a result, we often find that multiple values of the same entity reside in a
database, which were once correct, i.e., they were true values of the entity at some time, but most of them have
become obsolete and inaccurate. This highlights the need for studying data currency, to identify the current
values of entities in a database, and to answer queries with the current values.

This paper aims to bring attention to these issues. We present an overview of recent work on these four
issues (in Sections 2– 5, respectively). We argue that these issues interact with each other and also interact with
data repairing and record matching; they should be uniformly treated in a logical framework (Section 6).

2 Certain Fixes instead of Heuristic Repairs
Data repairing detects and fixes errors by using integrity constraints, such that data conflicts and errors emerge
as violations of the constraints. A variety of constraints have been studied for data repairing, such as denial
constraints [3], traditional functional and inclusion dependencies [1], and conditional dependencies [4,6,14,35].

Integrity constraints are capable of detecting whether the data is dirty, i.e., the presence of errors in the data.
However, they do not tell us which attributes of a tuple have errors and how we should correct the errors.

Example 1: Consider an input tuple t1 given in Fig. 1(a). It specifies a transaction record of a credit card: an item
purchased at place where and time when, by a UK customer who is identified by name (FN, LN), phone number
(area code AC and phone phn) and address (street str, city, zip code). Here phn is either home phone or mobile
phone, indicated by type (1 or 2, respectively). It is known that when AC is 020, city should be Ldn, and when
AC is 131, city must be Edi. This semantics of the data can be expressed as conditional functional dependencies
(CFDs [14]). The CFDs detect that tuple t1 is inconsistent: t1[AC] = 020 but t1[city] = Edi. However, they do not
tell us which of t[AC] and t[city] is wrong, and to what value it should be changed.

In light of this, prior data repairing methods are heuristic: they do not guarantee to find correct fixes in data
repairing. Worse still, they may introduce new errors when trying to repair the data. Indeed, the correct values
of t[AC, city] are (131, Edi). Nevertheless, all of the prior methods may opt to change t[city] to Ldn; this does
not fix the erroneous attribute t[AC] and worse still, messes up the correct attribute t[city]. 2

In practice it is often necessary to guarantee each fix to be certain, i.e., assured correct (validated). This
can done by using master data and editing rules. Master data (a.k.a. reference data) is a single repository of

2



high-quality data that provides various applications in an enterprise with a synchronized, consistent view of its
core business entities [25]. It is increasingly common for enterprises to maintain master data. Editing rules tell
us which attributes of a tuple are wrong and what values from master data they should take, provided that some
attributes are validated. As opposed to integrity constraints, they specify updates and have a dynamic semantics.

Example 2: A master relation Dm is shown in Fig. 1(b). Each tuple in Dm specifies a UK credit card holder in
terms of the name, home phone (Hphn), mobile phone (Mphn), address and gender. Consider editing rules:

• eR1: for an input tuple t, if there exists a master tuple s in Dm such that s[zip] = t[zip], then t should be
updated by t[AC, str, city] := s[AC, str, city], provided that t[zip] is validated (e.g., assured by the users).

• eR2: if t[type] = 2 (indicating mobile phone) and if there exists a master tuple s with s[phn] = t[Mphn],
then t[FN, LN] := s[FN, LN], as long as t[phn, type] are already validated.

When t1[zip] is assured correct, eR1 corrects attribute t1[AC] and enriches t1[str] by taking values from master
data s1[AC, str]. Note that when the editing rule and t1[zip] are validated, the fix to t1[AC] is certainly correct.
Similarly, when t1[Mphn, type] are validated, eR2 standardizes t1[FN] by changing Bob to Robert. 2

Certain fixes. More specifically, we define certain fixes as follows (see [16] for details). Consider an input tuple
t and a set Z of attributes such that t[Z] is validated. We use t →(ϕ,tm,Z) t

′ to denote that tuple t′ is obtained
from t by means of updates specified in an editing rule ϕ with a master tuple tm. We denote by ext(Z,ϕ, tm)
the validated region of t′, which includes attributes in Z and the attributes updated by ϕ with tm.

Given a set Θ of editing rules and master data Dm, we say that a tuple t′ is a fix of t by (Θ, Dm), denoted
by t →∗(Θ,Dm,Z) t

′, if there exists a finite sequence t0 = t, t1, . . ., tk = t′ of tuples, and for each i ∈ [1, k],
there exists an editing rule ϕi ∈ Θ and a master tuple tmi ∈ Dm such that (a) ti−1 →(ϕi,tmi ,Zi−1) ti, where
Zi = ext(Zi−1, ϕi, tmi−1); (b) ti[Z] = t[Z]; and (c) for all ϕ ∈ Θ and tm ∈ Dm, t′ →(ϕ,tm,Zm) t

′. Intuitively,
(a) each step of the correcting process is justified; (b) t[Z] is validated and hence, remains unchanged; and (c) t′

is a fixpoint and cannot be further updated, i.e., the changes incurred to t by (Θ, Dm) are “maximum”.
We say that t has a certain fix by (Θ, Dm) w.r.t. Z if there exists a unique t′ such that t→∗(Θ,Dm,Z) t

′.
Given a set Θ of editing rules and master data Dm, one can monitor input tuples and find their certain fixes.

For each tuple t, the user may assure that a (possible empty) set t[Z] of attributes is correct. There is an algorithm
that, given Z, iteratively employs Θ and Dm to find a certain fix for as many attributes in t as possible. The
correctness of the fix is guaranteed by master data and editing rules. As opposed to data repairing, we do not
stress fixing all the attributes of t by requiring the users to validate a large region t[Z]. Nevertheless, when the
users opt to find a certain fix for the entire t, there is an algorithm that, given Z, identifies a minimal set Z ′ of
attributes such that when t[Z ∪Z ′] is validated, a certain fix for t is warranted [16]. One can recommend t[Z ′] to
the users for validating, and the users may respond with more validated attributes (not necessarily t[Z ′]). From
these an interactive process readily follows that proceeds until all the attributes of t are validated.

Fundamental problems. There are several important problems associated with certain fixes. Consider tuples of
a relation schema R. One problem is to determine, given a set Θ of editing rules, master data Dm, and a set Z of
attributes of schema R, whether for all tuples t of R, if t[Z] is validated then t has a certain fix by (Θ, Dm). In
other words, it is to determine whether Θ and Dm have conflicts. Another problem is to find, given Θ and Dm,
a minimal set Z of attributes such that for all tuples t of schema R, if t[Z] is validated then all the attributes of t
can be validated by (Θ, Dm). Intuitively, it is to find a minimal region for the users to validate. It is shown that
these are intractable [16], but efficient heuristic algorithms have been developed for these problems.

3 Interaction between Data Repairing and Record Matching
Current data cleaning systems typically treat data repairing and record matching as separate processes, executed
consecutively one after another. In practice, the two processes often interact with each other, as illustrated below.

3



Example 3: Consider the transaction records of Fig. 1(a) and master data for credit card holders given in
Fig. 1(b), referred to as tran and card tuples, respectively. Following [11, 14], we use CFDs [14] ϕ1–ϕ2 to
specify the consistency of the tran data, and an MD [11] ψ as a rule for matching tran records and card tuples:

ϕ1: tran([AC = 131]→ [city = Edi]), ϕ2: tran([type = 1, city, phn]→ [St,AC, zip]),
ψ: tran[LN, city,St, zip] = card[LN, city,St, zip] ∧ tran[FN] ≈ card[FN] ∧ tran[type] = 1→ tran[FN, tel] 
 card[FN,Hphn]

Here (1) CFD ϕ1 asserts that if the area code is 131, the city must be Edi; (2) CFD ϕ2 states that when type = 1
(i.e., phn is mobile phone), city and home phone uniquely determine street, area code and zip code; and (3) MD
ψ assures that for any tran record t and any card tuple, if they have the same last name and address, and if their
first names are similar, then their home phone and FN attributes can be identified (when t[type] = 1).

Consider tuples t2 and t3 in Fig. 1(a). One suspects that the two refer to the same person. If so, then these
records show that the same person made purchases in the UK and in the US at about the same time (taking into
account the 5-hour time difference between the two countries), indicating that a fraud has likely been committed.

Observe that t2 and t3 are quite different in their FN, city, St, zip and phn attributes. No rule allows us to
identify the two directly. Nonetheless, they can be matched by interleaved matching and repairing operations:

(a) get a repair t′2 of t2 such that t′2[city]=Edi by applying CFD ϕ1 to t2;
(b) match t′2 with master tuple s2, to which MD ψ can be applied; as a result of the matching operation, get a

repair t′′2 of t2 by correcting t′′2[tel] with the master data s2[Hphn] = 6884563;
(c) find a repair t′3 of t3 by applying CFD ϕ2 to t′′2 and t3: since t′′2 and t3 agree on their city and tel attributes

and t′′2[type] = t3[type] = 1, ϕ2 can be applied. This allows us to enrich t3[St] and fix t3[post] by taking
corresponding values from t′′2 , which have been confirmed correct with the master data in step (b).

Note that t′′2 and t′3 agree on every attribute in connection with personal information. It is evident that they
indeed refer to the same person; hence a fraud. Observe that not only repairing helps matching (e.g., from step
(a) to (b)), but matching also helps us repair the data (e.g., step (c) is doable only after the matching in (b)). 2

Unification. The example tells us the following. (1) When taken together, record matching and data repairing
perform much better than being treated as separate processes. (2) To make practical use of their interaction,
matching and repairing operations should be interleaved, rather than executing the two processes one after
another. Unifying matching and repairing, we state the data cleaning problem as follows.

Given a databaseD, master dataDm, integrity constraints Σ and matching rules Γ, the data cleaning problem
is to find a repair Dr of D such that (a) Dr is consistent (i.e., satisfying Σ), (b) no more tuples in Dr can be
matched to master tuples in Dm by matching rules of Γ, and (c) Dr minimally differs from the original data D.

The interaction between repairing and matching has been observed in, e.g., [8, 17, 34]. [8, 34] investigate
record matching in the presence of error data, and suggest to integrate matching and data merge/fusion. A rule-
based framework is proposed in [17], in which CFDs and MDs are both treated as cleaning rules. These rules tell
us how to fix errors by updating the data, and allow us to interleave repairing and matching operations. Based
on these rules, algorithms have been developed to clean data, in the presence or in the absence of master data. It
has been shown that by unifying repairing and matching, these algorithms substantially improve the accuracy of
repairing and matching taken as separate processes [17].

Fundamental problems. When integrity constraints (for data repairing) and matching rules (for record match-
ing) are taken together, the classical consistency and implication problems for constraints need to be revisited.
These issues are investigated for CFDs and MDs in [17], which shows that these problems remain to be NP-
complete and coNP-complete, respectively, the same as their counterparts for CFDs alone.

There are two fundamental questions about rule-based data cleaning. The termination problem is to decide
whether a cleaning process stops, i.e., it reaches a fixpoint, such that no more rules can be applied. The determin-
ism problem asks whether all terminating cleaning processes end up with the same repair, i.e., all of them reach
a unique fixpoint. When CFDs and MDs are treated as cleaning rules, both problems are PSPACE-complete [17].

4



4 Relative Information Completeness
Given a database D and a query Q, we want to know whether a complete answer to Q can be found in D.
Traditional work on this issue adopts either the CWA or the OWA. The CWA assumes that a database contains
all the tuples representing real-world entities, but the values of some attributes in those tuples are possibly
missing. The OWA assumes that tuples may also be missing [33]. As remarked earlier, few real-life databases
are closed-world. Under the OWA, one can often expect few sensible queries to find complete answers.

Databases in real world are often neither entirely closed-world nor entirely open-world. This is particularly
evident in the presence of master data. Master data of an enterprise contains complete information about the
enterprise in certain aspects, e.g., employees and projects, and can be regarded as a closed-world database.
Meanwhile a number of other databases may be in use in the enterprise. On one hand, these databases may not
be complete, e.g., some sale transactions may be missing. On the other hand, certain parts of the databases are
constrained by the master data, e.g., employees. In other words, these databases are partially closed.

Example 4: Consider a company that maintains DCust(cid, name,AC, phn), a master data relation consisting of
all its domestic customers, in which a tuple (c, n, a, p) specifies the id c, name n, area code a and phone number
p of a customer. In addition, the company also has databases (a) Cust(cid, name,CC,AC, phn) of all customers
of the company, domestic (with country code CC = 01) or international; and (b) Supt(eid, dept, cid), indicating
that employee eid in dept supports customer cid. Neither Cust nor Supt is part of the master data.

Consider a query Q1 posed on Supt to find all the customers in NJ with AC = 908 who are supported by
the employee with eid = e0. The query may not get a complete answer since some tuples may be missing from
Supt. However, if Q1 returns all NJ customers with AC = 908 found in master data DCust, then we can safely
conclude that Supt is complete for Q1 and hence, there is no need to add more tuples to Supt to answer Q1.

Now consider a query Q2 to find all customers supported by e0. Note that the international customers of
Cust are not constrained by master data. As a result, we are not able to tell whether any Supt tuples in connection
with e0 are missing. Worse still, we do not even know what tuples should be added to Supt to make the answer
to Q2 in Supt complete. Nevertheless, if we know that (eid → dept, cid) is a functional dependency (FD) on
Supt, then we can also conclude that the answer to Q2 in Supt is complete as long as it is nonempty. 2

Relative information completeness. A practical data cleaning system should be able to decide whether a
database has complete information to answer a query. To this end, as shown by the example, we need a model to
specify partially closed databases. There has been a host of work on incomplete information, notably represen-
tation systems (e.g., c-tables, v-tables [21,23]) and models for missing tuples [20,24,28] (see [33] for a survey).
However, the prior work neither considers master data nor studies the question mentioned above.

Given a databaseD and master dataDm, we specify a set V of containment constraints [13]. A containment
constraint is of the form q(D) ⊆ p(Dm), where q is a query posed on D, and p is a simple projection query
on Dm. Intuitively, the part of D that is constrained by V is bounded by Dm, while the rest is open-world. We
refer to a database D that satisfies V as a partially closed database w.r.t. (Dm, V ). A database D′ is a partially
closed extension of D if D ⊆ D′ and D′ is partially closed w.r.t. (Dm, V ) itself.

A partially closed database D is said to be complete for a query Q relative to (Dm, V ) if for all partially
closed extensions D′ of D w.r.t. (Dm, V ), Q(D′) = Q(D). That is, there is no need for adding new tuples to
D, since they either violate the containment constraints, or do not change the answer to Q. In other words, D
already contains complete information necessary for answering Q (see [12, 13] for details).

Fundamental problems. One problem is to determine, given a queryQ, master dataDm, a set V of containment
constraints, and a partially closed databaseD w.r.t. (Dm, V ), whetherD is complete forQ relatively to (Dm, V ).
Another problem is to decide, given Q, Dm and V , whether there exists a partially closed database D that is
complete for Q relatively to (Dm, V ). The analyses of these problems help us identify what data should be
collected in order to answer a query. These problems are investigated in [12, 13]. As indicated by Example 4,
the complexity of these problems varies depending on different queries and containment constraints [12, 13].

5



FN LN address salary status
t1: Mary Smith 2 Small St 50k single
t2: Mary Dupont 10 Elm Ave 50k married
t3: Mary Dupont 6 Main St 80k married
t4: Bob Luth 8 Cowan St 80k married
t5: Robert Luth 8 Drum St 55k married

(a) Relation Emp

dname mgrFN mrgLN mgrAddr budget
s1: R&D Mary Smith 2 Small St 6500k
s2: R&D Mary Smith 2 Small St 7000k
s3: R&D Mary Dupont 6 Main St 6000k
s4: R&D Ed Luth 8 Cowan St 6000k

(b) Relation Dept

Figure 2: A company database

5 Data Currency
A data cleaning system should support data currency analysis: among multiple (possibly obsolete) values of
an entity, it is to identify the latest value of the entity, and to answer queries using the latest values only. The
question of data currency would be trivial if all data values carried valid timestamps. In practice, however,
timestamps are often unavailable or imprecise [36]. Add to this the complication that data values are often
copied or imported from other sources [2, 7], which may not support a uniform scheme of timestamps.

Not all is lost. It is often possible to deduce currency orders from the semantics of the data. Moreover,
data copied from other sources inherit currency orders in those sources. Taken together, these often allow us to
deduce sufficient current values of the data to answer certain queries, as illustrated below.

Example 5: Consider two relations of a company shown in Fig. 2. Each Emp tuple is an employee record with
name, address, salary and marital status. A Dept tuple specifies the name, manager and budget of a department.
Records in these relations may be stale, and do not carry timestamps. Here tuples t1, t2 and t3 refer to the same
employee Mary, while t4 and t5 do not refer to Mary. Consider the following queries posed on these relations.
(1) Query Q1 is to find Mary’s current salary. No timestamps are available for us to tell which of 50k or 80k is
more current. However, we may know that the salary of each employee in the company does not decrease, as
commonly found in real world. This yields currency orders t1 ≺salary t3 and t2 ≺salary t3, i.e., t3[salary] is more
current than both t1[salary] and t2[salary]. Hence the answer to Q1 is 80k.
(2) Query Q2 is to find Mary’s current last name. We can no longer answer Q2 as above. Nonetheless, we may
know the following: (a) marital status can only change from single to married and from married to divorced; but
not from married to single; and (b) Emp tuples with the most current marital status also contain the most current
last name. Therefore, t1 ≺LN t2 and t1 ≺LN t3, and the answer to Q2 is Dupont.
(3) Query Q3 is to find Mary’s current address. We may know that Emp tuples with the most current salary
contain the most current address. Putting this and (1) together, we know that the answer to Q3 is “6 Main St”.
(4) Finally, query Q4 is to find the current budget of department R&D. Again no timestamps are available for
us to evaluate the query. However, we may know the following: (a) Dept tuples s1 and s2 have copied their
mgrAddr values from t1[address] in Emp; similarly, s3 has copied from t3, and s4 from t4; and (b) in Dept, tuples
with the most current address also have the most current budget. Taken together, these tell us that s1 ≺budget s3

and s2 ≺budget s3. Observe that we do not know which budget in s3 or s4 is more current. Nevertheless, in
either case the most current budget is 6000k, and hence it is the answer to Q4. 2

Modeling data currency. To study data currency we need to specify currency orders on data values in the
absence of timestamps but in the presence of copy relationships. Such a model is recently proposed in [15].
(1) To model partially available currency information in a database D, it assumes a currency order ≺A for each
attribute A, such that for tuples t1 and t2 in D that represent the same real-world entity, t1 ≺A t2 indicates
that t2 is more up-to-date than t1 in the A attribute value. (2) It uses denial constraints [1] to express currency
relationships derived from the semantics of the data. For instance, all the currency relations we have seen in
Example 5 can be expressed as denial constraints. (3) A copy function from a data source to another is defined
in terms of a partial mapping that preserves the currency order in the source. Based on these, one can define
consistent completionsDc ofD, which extend≺A inD to a total order on all tuples pertaining to the same entity,
such that Dc satisfies the denial constraints and constraints imposed by the copy functions. One can construct

6



from Dc the current tuple for each entity w.r.t. ≺A, which contains the entity’s most current A value for each
attribute A. This yields the current instance of Dc consisting of only the current tuples of the entities in D, from
which currency orders can be removed. In light of this, one can compute certain current answers of a query Q
in D, i.e., tuples that are the answers to Q in all consistent completions Dc of D (see [15] for details).

The study of data currency is related to temporal databases, which assume the availability of timestamps
(see [30] for a survey). Also related is the line of work on querying indefinite data (see, e.g., [32]), which
considers data that is linearly ordered but only provides a partial order, but does not evaluate queries using
current instances. Algorithms for discovering copy dependencies and functions are developed in [2, 7].

Fundamental problems. Given a database D on which partial currency orders, denial constraints and copy
functions ρ are defined, we want to determine (1) whether a value is more up-to-date than another, and (2)
whether a tuple is a certain current answer to a query. In addition, about copy functions ρ, we want to determine
(3) whether ρ is currency preserving for a query Q, i.e., no matter how we extend ρ by copying more values of
those entities in D, the certain current answers to Q in D remain unchanged; and (4) whether ρ can be extended
to be currency preserving for Q. These problems have been studied in [15] for different queries.

6 Open Research Issues
It is evident that functionalities for handling these issues should logically become part of a data cleaning system.
However, we are not aware of any data cleaning system that provides such functionalities. The study of these
issues is still in its infancy, and it has raised as many questions as it has answered.

Certain fixes. One question is how to find certain fixes in the absence of master data. Another question concerns
methods for discovering editing rules. Indeed, it is unrealistic to rely solely on human experts to design editing
rules via an expensive and long manual process. It is likely, however, that editing rules can be deduced from
master data and constraints such as CFDs and MDs, for which discovery algorithms are already in place [5, 31].

Relative information completeness and data currency. While the fundamental problems for these issues have
been studied, efficient algorithms have yet to be developed and incorporated into data cleaning systems.

A uniform logical framework. To answer a query using a databaseD, one naturally wantsD to be both complete
and consistent for Q, and moreover, does not contain duplicates and stale data. In addition, there are intimate
connections between these issues. (1) Improving data completeness provides us with more information to repair
and match the data, and conversely, data repairing and record matching help us enrich the data as shown in
Example 2. (2) Identifying the current value of an entity helps resolve data inconsistencies and duplication, and
repairing and matching help us remove obsolete data. (3) Data currency is essentially to deal with missing tem-
poral information, and hence can naturally capitalize on techniques for relative information completeness such
as containment constraints and master data. All these highlight the need for developing a uniform framework to
handle certain fixes, data repairing, record matching, relative information completeness and data currency. The
framework should support the interaction of these processes, to improve the accuracy of data cleaning.

It is both natural and feasible to develop such a framework based on constraints and master data. Indeed,
(1) constraints are typically used to capture inconsistencies (e.g., [1, 4, 14]). (2) Record matching rules [11] and
editing rules [16] can be expressed as dynamic constraints. (3) It is shown [13] that constraints for data consis-
tency, such as denial constraints [1] and conditional dependencies [4,14], are expressible as simple containment
constraints studied for relative information completeness. As a result, we can assure that only consistent and
partially closed databases are considered by enforcing containment constraints. (4) It suffices to express data cur-
rency commonly found in practice as denial constraints [15], the same class of constraints for data consistency.
(5) As remarked earlier, master data has proved effective in dealing with each and every of these issues.

References
[1] M. Arenas, L. E. Bertossi, and J. Chomicki. Consistent query answers in inconsistent databases. TPLP, 3(4-5):393–

424, 2003.

7



[2] L. Berti-Equille, A. D. Sarma, X. Dong, A. Marian, and D. Srivastava. Sailing the information ocean with awareness
of currents: Discovery and application of source dependence. In CIDR, 2009.

[3] P. Bohannon, W. Fan, M. Flaster, and R. Rastogi. A cost-based model and effective heuristic for repairing constraints
by value modification. In SIGMOD, 2005.

[4] L. Bravo, W. Fan, and S. Ma. Extending dependencies with conditions. In VLDB, 2007.

[5] F. Chiang and R. Miller. Discovering data quality rules. PVLDB, 1(1), 2008.

[6] G. Cong, W. Fan, F. Geerts, X. Jia, and S. Ma. Improving data quality: Consistency and accuracy. In VLDB, 2007.

[7] X. Dong, L. Berti-Equille, and D. Srivastava. Truth discovery and copying detection in a dynamic world. In VLDB,
2009.

[8] X. Dong, A. Halevy, and J. Madhavan. Reference reconciliation in complex information spaces. In SIGMOD, 2005.

[9] W. W. Eckerson. Data quality and the bottom line: Achieving business success through a commitment to high quality
data. The Data Warehousing Institute, 2002.

[10] A. Elmagarmid, P. Ipeirotis, and V. Verykios. Duplicate record detection: A survey. TKDE, 19(1):1–16, 2007.

[11] W. Fan, H. Gao, X. Jia, J. Li, and S. Ma. Dynamic constraints for record matching. VLDB J., to appear.

[12] W. Fan and F. Geerts. Capturing missing tuples and missing values. In PODS, 2010.

[13] W. Fan and F. Geerts. Relative information completeness. TODS, 35(4), 2010.

[14] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Conditional functional dependencies for capturing data inconsis-
tencies. TODS, 33(2), 2008.

[15] W. Fan, F. Geerts, and J. Wijsen. Determining the currency of data. In PODS, 2011.

[16] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Towards certain fixes with editing rules and master data. PVLDB, 2010.

[17] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Interaction between record matching and data repairing. In SIGMOD,
2011.

[18] I. Fellegi and D. Holt. A systematic approach to automatic edit and imputation. J. American Statistical Association,
71(353):17–35, 1976.

[19] Gartner. Forecast: Data quality tools, worldwide, 2006-2011. Technical report, Gartner, 2007.

[20] G. Gottlob and R. Zicari. Closed world databases opened through null values. In VLDB, 1988.

[21] G. Grahne. The Problem of Incomplete Information in Relational Databases. Springer, 1991.

[22] T. N. Herzog, F. J. Scheuren, and W. E. Winkler. Data Quality and Record Linkage Techniques. Springer, 2009.

[23] T. Imieliński and W. Lipski, Jr. Incomplete information in relational databases. JACM, 31(4), 1984.

[24] A. Y. Levy. Obtaining complete answers from incomplete databases. In VLDB, 1996.

[25] D. Loshin. Master Data Management. Knowledge Integrity, Inc., 2009.

[26] C. Mayfield, J. Neville, and S. Prabhakar. ERACER: a database approach for statistical inference and data cleaning.
In SIGMOD, 2010.

[27] D. W. Miller et al. Missing prenatal records at a birth center: A communication problem quantified. In AMIA Annu
Symp Proc., 2005.

[28] A. Motro. Integrity = validity + completeness. TODS, 14(4), 1989.

[29] B. Otto and K. Weber. From health checks to the seven sisters: The data quality journey at BT, Sept. 2009. BT
TR-BE HSG/CC CDQ/8.

[30] R. T. Snodgrass. Developing Time-Oriented Database Applications in SQL. Morgan Kaufmann, 1999.

[31] S. Song and L. Chen. Discovering matching dependencies. In CIKM, 2009.

[32] R. van der Meyden. The complexity of querying indefinite data about linearly ordered domains. JCSS, 54(1), 1997.

[33] R. van der Meyden. Logical approaches to incomplete information: A survey. In J. Chomicki and G. Saake, editors,
Logics for Databases and Information Systems. Kluwer, 1998.

[34] M. Weis and F. Naumann. Dogmatix tracks down duplicates in XML. In SIGMOD, 2005.

[35] M. Yakout, A. K. Elmagarmid, J. Neville, M. Ouzzani, and I. F. Ilyas. Guided data repair. PVLDB, 4(1), 2011.

[36] H. Zhang, Y. Diao, and N. Immerman. Recognizing patterns in streams with imprecise timestamps. In VLDB, 2010.

8


