
Front. Comput. Sci. China, 201X, X(X)
DOI

RESEARCH ARTICLE

Adding Regular Expressions to

Graph Reachability and Pattern Queries

Wenfei, Fan1,2 and Jianzhong, Li2 and Shuai, Ma3 and Nan, Tang4 and Yinghui, Wu1

1 University of Edinburgh, Edinburgh, UK
2 Harbin Institute of Technology, Harbin, China
3 NLSDE Lab, Beihang University, Beijing, China

4 Qatar Computing Research Institute, Qatar Foundation, Qatar

c© Higher Education Press and Springer-Verlag 201X

Abstract It is increasingly common to find graphs
in which edges bear different types, indicating a vari-
ety of relationships. For such graphs we propose a class
of reachability queries and a class of graph patterns, in
which an edge is specified with a regular expression of a
certain form, expressing the connectivity in a data graph
via edges of various types. In addition, we define graph
pattern matching based on a revised notion of graph sim-
ulation. On graphs in emerging applications such as so-
cial networks, we show that these queries are capable
of finding more sensible information than their tradi-
tional counterparts. Better still, their increased expres-
sive power does not come with extra complexity. Indeed,
(1) we investigate their containment and minimization
problems, and show that these fundamental problems are
in quadratic time for reachability queries and are in cubic
time for pattern queries. (2) We develop an algorithm for
answering reachability queries, in quadratic time as for
their traditional counterpart. (3) We provide two cubic-
time algorithms for evaluating graph pattern queries, as
opposed to the NP-completeness of graph pattern match-
ing via subgraph isomorphism. (4) The effectiveness and
efficiency of these algorithms are experimentally verified
using real-life data and synthetic data.

1 Introduction
It is increasingly common to find data modeled as graphs
in a variety of areas, e.g., computer vision, knowledge

Received month dd.yyyy; accepted month dd.yyyy

E-mail: {wenfei@inf., y.wu-18@sms.}ed.ac.uk
lijzh@hit.edu.cn, contact author
mashuai@act.buaa.edu.cn, contact author
ntang@qf.org.qa

Fig. 1 Querying Essembly Network

discovery, biology, chem-informatics, dynamic network
traffic, social networks, semantic Web and intelligence
analysis. To query data graphs, two classes of queries
are being widely used:

(a) Reachability queries, asking whether there exists a
path from one node to another [4, 17,28–30,44].

(b) Graph pattern queries, to find all subgraphs of
a data graph that are isomorphic to a pattern
graph [8, 14,16,42,48] (see [24] for a survey).

In emerging applications such as social networks,
edges in a graph are typically “typed”, denoting various
relationships such as marriage, friendship, work, advice,
support, exchange, co-membership, etc [33]. In practice
one often wants to query the connectivity of a pair of
nodes via edges of particular types, or to identify graph
patterns with edges of certain types, as illustrated by the
following real-life example taken from [9].

Example 1.1: Consider an Essembly network service
[9], where users post and vote on controversial issues and
topics. Each person has attributes such as userid, job,
contact information, as well as a list of issues they sup-
port or disapprove, denoted by “sp” and “dsp”, respec-
tively. There are four types of relationships between a
pair of persons: (1) friends-allies (fa), connecting one
user to a friend, if she shares the same views on most
(more than half) topics that her friend votes for; (2)
friends-nemeses (fn), from one user to a friend if she dis-
agrees with her friend on most topics; (3) strangers-allies
(sa), relates a user to a stranger whom she agrees with on
most topics they vote; and (4) strangers-nemeses (sn),

2
Frontiers of Computer Science in China

from a user to a stranger with whom she disagrees on
most topics they both vote.

Figure 1 depicts a part of the network as a graph G
that involves a debate on cloning research. In the graph
G, each node denotes a person, and each edge has a type
in {fa, fn, sa, sn}. Consider two queries Q1 and Q2 on G,
which are also shown in Fig. 1.

(1) Query Q1 is a reachability query, which is to find all
biologists (nodes C) who support “cloning”, along with
those doctors (nodes B) who are friends-nemeses (via fn)
of some users supported by C within 2 hops (via fa≤2).

(2) Query Q2 is a pattern query, issued by a person D
identified by id “Alice001” who supports “cloning”. The
person would like to find all her friends-nemeses (via
fn) who are doctors, and are against “cloning”. She also
wants to know if there are people such that (a) they are
biologists (nodes C), support “cloning research”, and are
connected within 2 hops to someone via fa relationships,
who is in turn within 2 hops to person D via sa (edge
(C,D)); (b) they are in a scientist group with friends all
sharing the same view towards cloning (edge (C,C));
and moreover, (c) these biologists are against those
doctor friends of her, and vice versa, via paths of certain
patterns (edges (C,B) and (B,C)).

Observe the following. (1) The graph G has multiple
edge types (fa, fn, sa, sn) indicating various relationships,
which are an important part of the semantics of the data.
(2) Traditional reachability queries are not capable of ex-
pressing Q1. Indeed, they characterize connectivity by
the existence of a path of arbitrary length, with edges of
arbitrary types. In contrast, Q1 aims to identify connec-
tivity via a path
(a) with edges of particular types and patterns, and
(b) with a bound on its length (hops).

In other words, Q1 bears richer semantics than its con-
ventional counterparts. (3) Traditional graph pattern
queries cannot express Q2 for the two reasons given
above; moreover, to find sensible information for person
D, it should logically allow
(c) its node to map to multiple nodes in G, e.g., from

B in Q2 to both B1 and B2 in G, and
(d) its edges map to paths composing of edges with cer-

tain types, e.g., from the edge (C,D) in Q2 to the
path C3

fa−→ C1
sa−→ D1 in G.

That is, traditional pattern queries defined in terms of
subgraph isomorphism are insufficient to express Q2. 2

As suggested by the example, emerging applications
highlight the need for revising the traditional reachabil-
ity queries and graph pattern queries to incorporate edge
types and bounds on the number of hops. In addition, it
is necessary to revise the notion of graph pattern match-
ing to accommodate the semantics of data in new appli-
cations, and moreover, to reduce its complexity. Indeed,

the np-completeness of subgraph isomorphism makes it
infeasible to find matches in large data graphs.

Contributions & Roadmap. To this end we propose
a class of reachability queries, as well as a class of graph
pattern queries, defined in terms of a subclass F of reg-
ular expressions.

(1) We introduce reachability queries (RQs) and graph
pattern queries (PQs) in Section 2. In such a query, each
node specifies search conditions on the content of the
graph nodes, and an edge is associated with a regular
expression in F , specifying the connectivity via a path
of certain edge types and of a possibly bounded length.
In addition, we define pattern matching by extending
graph simulation [26], instead of using subgraph isomor-
phism. For instance, queries Q1 and Q2 in Fig. 1 can be
expressed as an RQ and a PQ, respectively.

(2) We study fundamental problems for these queries:
containment, equivalence and minimization (Section 3),
along the same lines as for XML tree pattern queries [35,
47]. We show that these problems are in O(n2) time and
O(n3) time for RQs and PQs, respectively, where n is
the size of the queries. Contrast these low polynomial
time (ptime) bounds with their counterparts for general
regular expressions, which are pspace-complete [36]. As
an immediate application, we develop an algorithm in
O(n3) time to minimize PQs, which yields an effective
optimization strategy.

(3) We develop two algorithms to answer RQs (Sec-
tion 4). One employs a matrix of shortest distances be-
tween nodes. It is in quadratic time, the same as its
traditional counterpart [44]. That is, the increased ex-
pressive power of RQs does not incur extra complexity.
The other adopts bi-directional search with an auxiliary
cache (using hashmap as indices) to keep track of fre-
quently asked items. It is used when it is too costly to
maintain all shortest distances for large graphs.

(4) We provide two algorithms for evaluating PQs (Sec-
tion 5), both in cubic time if a matrix of shortest dis-
tances between nodes is used. One follows a join-based
approach, while the other adopts a split-based approach
commonly used in labeled transition systems. Contrast
this with the intractability of graph pattern matching
based on subgraph isomorphism. These tell us that the
revised notion of graph pattern matching allows us to ef-
ficiently find sensible patterns in emerging applications.

(5) Using both real-life data (YouTube and Global Ter-
rorism Database [1]) and synthetic data, we conduct an
experimental study (Section 6). We find that our evalu-
ation algorithms for RQs and PQs scale well with large
data graphs, and are able to identify sensible matches
that their traditional counterparts fail to find. We also
find that the minimization algorithm of PQs is effective
in improving performance.

Front. Comput. Sci. China
3

Related work. This work extends [19] by including de-
tailed proofs of the fundamental problems in connection
with (1) the uniqueness of graph pattern query answers
(Section 2), i.e., graph pattern queries are well defined;
and (2) the containment, equivalence and minimization
problems of graph reachability queries and graph pattern
queries (Section 3). (3) A detailed algorithm for pattern
query minimization is also included (Section 3).

The idea of using regular expressions to query graphs
is not new: it has been adopted by query languages for
semistructured data such as UnQL [10] and Lorel [3].
There has also been theoretical work on conjunctive reg-
ular path queries CRPQs (e.g., [23]) and recently on ex-
tended CRPQs (ECRPQs) [7], which also define graph
queries using regular expressions. However, these lan-
guages are defined with general regular expressions. As
a result, the problem for evaluating CRPQs is already np-
complete, and it is pspace-complete for ECRPQs [7]. For
those queries the containment and minimization analyses
are also pspace-hard. We are not aware of any existing
efficient algorithms for answering graph pattern queries
defined with regular expressions. In contrast, this work
defines graph queries in terms of a subclass of regular
expressions, and revises the notion of pattern matching
based on an extension of graph simulation. It aims to
strike a balance between the expressive power needed
to deal with common graph queries in emerging applica-
tions, and the increased complexity incurred. This allows
us to conduct the static analyses (containment and min-
imization) and evaluate queries efficiently, in low ptime.

There have also been recent graph query languages
that support limited regular expressions, e.g., GQ [25],
SoQL [38] and SPARQL [40]. GQ supports arbitrary at-
tributes on nodes, edges and graphs. SoQL is a SQL-like
language that allows users to retrieve paths satisfying
various conditions. SPARQL [40] is a query language tai-
lored for RDF graphs coded as a set of triples (subject,
predicate and object). Queries on graphs with labeled di-
rected or undirected edges and label or unlabeled nodes
have also been studied [32]. These languages adopt sub-
graph isomorphism for graph pattern search, which dif-
fers from this work, among other things.

A number of algorithms have been developed for eval-
uating reachability queries [17,29,44]. These algorithms
typically associate certain coding with graph nodes, and
detect connectivity by inspecting the coding of relevant
nodes. The coding, however, tells us neither the dis-
tance between nodes nor the types of edge on the shortest
path. Distance queries [12, 17, 45] compute the distance
between a pair of nodes, but do not consider edge types.
Recently, a class of label-constraint reachability queries
was proposed in [28], which ask whether one node reaches
another via a path whose edge labels are in a set of la-
bels. However, none of these can express reachability
characterized by regular expressions, such as Q1.

Graph pattern matching is typically defined in terms
of subgraph isomorphism [8, 14, 16, 42, 48] (see [24, 39]
for surveys). Extensions of subgraph isomorphism are
studied in [18,21,48], which extend mappings from edge-
to-edge to edge-to-path. Nevertheless, the problem re-
mains np-complete. Closer to this work is the notion of
bounded simulation studied in [20], which extends graph
simulation [11, 26] for graph pattern matching by allow-
ing bounds on the number of hops, and makes graph
pattern matching a ptime problem. This work further
extends [20] by incorporating regular expressions as edge
constraints, and for these more expressive graph queries,
it develops efficient evaluation algorithms and settles
their fundamental problems for containment, equivalence
and minimization, which are important for query opti-
mizations. No previous work has studied these.

The containment and minimization problems are clas-
sical problems for any query language (see, e.g., [2]).
These problems have been well studied for XPath (e.g.,
[13,35,47]). However, we are not aware of previous work
on these problems for graph pattern queries.

There has also been a host of work on structural in-
dices [31, 34] for evaluating regular expression queries.
Unfortunately, the indexing structures are developed for
tree-structured data (XML) in which there is a unique
path between two nodes; they cannot be directly used
when processing general graphs.

2 Graph Reachability and Pattern Queries
In this section, we start with data graphs, and then
introduce reachability queries (RQs) and graph pattern
queries (PQs) on data graphs.

Data graphs. A data graph is a directed graph G =
(V,E, fA, fC), where (1) V is a finite set of nodes; (2)
E ⊆ V ×V is a finite set of edges, in which (v, v′) denotes
an edge from node v to v′; (3) fA is a function defined
on V such that for each node v in V , fA(v) is a tuple
(A1 = a1, . . . , An = an), where Ai = ai (i ∈ [1, n]),
representing that the node v has a constant value ai for
the attribute Ai, and denoted as v.Ai = ai; and (4) fC
is a function defined on E such that for each edge e in
E, fC(e) is a color symbol in a finite alphabet Σ.

Intuitively, the function fA carries node properties,
e.g., labels, keywords, blogs, comments, ratings [5]; the
function fC specifies edge types, i.e., relationships; and
the alphabet Σ denotes all possible edge types, e.g., mar-
riage, friendship, work, advice, support, exchange [33].

Example 2.1: Figure 1 shows a data graph G = (V,E,
fA, fC), where (1) each edge e in E carries a color fC(e)
in {fa, fn, sa, sn}; and (2) each node v in V has a tu-
ple fA(v), where (a) fA(Bi) = (job = “doctor”, dsp =
“cloning”) for i ∈ [1, 2], (b) fA(Cj) = (job = “biologist”,
sp = “cloning”) for j ∈ [1, 3], (c) fA(D1) = (uid = “Al-
ice001”), and (d) fA(H1) = (job = “physician”). 2

4
Frontiers of Computer Science in China

Fig. 2 Results of the queries Q1 and Q2 on G

We shall use the following notations.
(1) A path ρ in G is denoted as v0

e1−→v1
e2−→ . . . vn−1

en−→
vn, where (a) vi ∈ V for each i ∈ [0, n], and (b) ej =
(vj , vj+1) is in E for each j ∈ [1, n]. The length |ρ| of ρ
is n, i.e., the number of edges in ρ. We say a path ρ is
nonempty if |ρ| ≥ 1.

(2) Abusing notations for trees, we refer to a node v2
as a child of a node v1 (or v1 as a parent of v2) if there
exists an edge (v1, v2) in E, and refer to a node v2 as a
descendant of a node v1 (or v1 as an ancestor of v2) if
there exists a nonempty path from v1 to v2 in G.

Reachability queries. A reachability query (RQ) is de-
fined as Qr = (u1, u2, fu1

, fu2
, fe), where (1) u1 and u2

are two nodes; (2) fui
(i ∈ [1, 2]) is a predicate defined as

a conjunction of atomic formulas of the form of ‘A op a’
such that A denotes an attribute of the node ui, a is a
constant value, and op is a comparison operator in the
set {<,≤,=, 6=, >,≥}; and (3) fe is a regular expression
drawn from the subclass:

F ::= c | c≤k | c+ | FF.
Here (1) c is either a color symbol in Σ or a wildcard _,
where the wildcard _ is a variable standing for any color
symbol in Σ; it can be expressed as a regular expression
c1 ∪ . . . ∪ cm, when Σ = {ci | i ∈ [1,m]}; (2) k is a
positive integer, and c≤k denotes the regular expression
c1∪c2∪. . .∪ck, where cj (j ∈ [1, k]) denotes j occurrences
of c; and (3) c+ denotes one or more occurrences of c.

We shall use L(fe) to denote the regular language de-
fined by fe, i.e., the set of all strings that can be parsed
by the grammar fe.

Semantics. Consider an RQ Qr = (u1, u2, fu1 , fu2 , fe)
posed on a data graph G = (V,E, fA, fC).

We say that a node v in G matches the node u1 in Gr,
denoted as v ∼ u1, if for each atomic formula ‘A op a’
in fu1

, there exists an attribute A in fA(v) such that
v.A op a; similarly for v ∼ u2. Intuitively, the predicates
fu1

and fu2
specify search conditions for query nodes.

We say that a pair (v1, v2) of nodes in G matches the
regular expression fe, denoted as (v1, v2) ≈ fe, if there
exists a nonempty path ρ = v1

e1−→ v′1
e2−→ v′2 . . . v

′
n−1

en−→
v2 in G such that the string fC(e1) . . . fC(en) is in L(fe).

The result Qr(G) of Qr on G is the set of node pairs
(v1, v2) such that v1 ∼ u1, v2 ∼ u2, and (v1, v2) ≈ fe.

Intuitively, (v1, v2) is in Qr(G) if v1 and v2 satisfy
the conditions specified by u1 and u2, respectively, and
moreover, there exists a nonempty path from v1 to v2
in G such that the edge colors on the path match the
pattern specified by the regular expression fe. We say
v1 (resp. v2) is a match of u1 (resp. u2).

Example 2.2: The query Q1 shown in Fig. 1 is an RQ
in which fe = fa≤2fn, the node C has the predicate sp =
“cloning” and job = “biologist”, and the node B has the
predicate job = “doctor”.

When Q1 is posed on the data graph G shown in
Fig. 1 and described in Example 2.1, the answer Q1(G) is
shown in Fig. 2. Indeed, Bi ∼ B (i ∈ [1, 2]) and Cj ∼ C
(j ∈ [1, 3]). In addition, (C2, B1) ≈ fe since there exists a
path C2

fa−→ C3
fn−→ B1 in G, and the string fa fn matches

the regular expression fa≤2fn. Similarly, (C1, B1) ≈ fe,
(C1, B2) ≈ fe, and (C2, B2) ≈ fe. Hence the query result
Q1(G) = {(C1, B1), (C1, B2), (C2, B1), (C2, B2)}. 2

Remark. (1) Observe that a single edge in query Qr is
mapped to a nonempty path in the data graph G; more-
over, the edge colors on the path have to match the reg-
ular expression fe.
(2) RQs are more expressive than traditional reachabil-
ity queries studied in e.g., [28,29,45], by capturing edge
relationships with regular expressions.

Graph pattern queries. Using RQs as building blocks,
we next define graph pattern queries.

A graph pattern query (PQ) is a directed graph Qp
= (Vp, Ep, fv, fe), where (1) Vp is a finite set of nodes;
(2) Ep ⊆ Vp × Vp is a finite set of edges, in which
(u, u′) denotes an edge from node u to u′; and (3) the
functions fv and fe are defined on Vp and Ep, respec-
tively, such that for each edge e = (u, u′) ∈ Ep, Qr =
(u, u′, fv(u), fv(u

′), fe) is an RQ. In the rest part of this
paper, we shall simply use fe to represent the regular ex-
pression assigned by the function fe to an edge e unless
specified otherwise.

Semantics. When the graph pattern query Qp is evalu-
ated on a data graph G = (V,E, fA, fC), the query result
Qp(G) is the maximum set {(e, Se) | e ∈ Ep} that satis-
fies the following conditions:

(1) for all edges e = (u1, u2) in Qp, Se ⊆ Qe(G), where
Qe = (u1, u2, fv(u1), fv(u2), fe) is an RQ;

(2) for each edge e = (u1, u2) in Qp, if a pair (v1, v2) of
nodes in G is in Se, then (a) for each edge e1 = (u1, u3) in
Qp, there exists a node v3 in G such that (v1, v3) ∈ Se1 ;
and (b) for each edge e2 = (u2, u4) in Qp, there exists a
node v4 in G such that (v2, v4) ∈ Se2 ; and

(3) there exists no edge e in Qp such that Se is empty. In
other words, Qp(G) = ∅ if for some e in Qp, Se is empty.

We say v1 (resp. v2) is a match of u1 (resp. u2). Here

Front. Comput. Sci. China
5

the size of Qp(G) is defined as
∑
e∈Ep

|Se|, where |Se| is
the number of elements in Se.

Intuitively, QP (G) defines a relation R ⊆ Vp × V . To
see this, for each edge e = (u1, u2) in Qp, denote by Qe =
(u1, u2, fv(u1), fv(u2), fe) its associated RQ embedded
in Gp. Then for a node u1 ∈ Vp and a node v1 ∈ V ,
(u1, v1) is in R if for each edge e = (u1, u2) emanating
from u1 in Gp, there exists a nonempty path ρ from
v1 to v2 in G such that (1) the node v1 satisfies the
search conditions specified by fv(u1) in the RQ Qe; (2)
the path ρ is constrained by the regular expression fe;
and (3) (u2, v2) is also in R. In addition, R covers all
the nodes in Vp and moreover, it is maximum, i.e., for
all such relation R′, R′ ⊆ R. The result Qp(G) is simply
R grouped by edges in Ep. In particular, if condition (3)
above is not satisfied, Qp(G) is empty.

From this one can see that PQs are defined in terms
of an extension of graph simulation [26], by (a) imposing
search conditions on the contents of nodes; (b) mapping
an edge in a pattern to a nonempty path in a data graph
(i.e., the child u2 of u1 is mapped to a descendant of v2
of v1); and (c) constraining the edges on the path with
a regular expression. This differs from the traditional
notion of graph pattern matching defined in terms of
subgraph isomorphism [24] and graph simulation [26].

Example 2.3: The query Q2 given in Fig. 1 is a PQ.
In Q2 each node carries search conditions, and each edge
has an associated regular expression, as shown in Fig. 1.

When the query Q2 is posed on the data graph G of
Fig. 1, the query result Q2(G) is depicted in Fig. 2 and
is shown in the table below:

edge matches edge matches
(B,C) {(B1, C3), (B2, C3)} (C,C) {(C3, C3)}
(B,D) {(B1, D1), (B2, D1)} (C,D) {(C3, D1)}
(C,B) {(C3, B1), (C3, B2)}

Indeed, one can verify that Bi ∼ B (i ∈ [1, 2]), Cj ∼ C
(j ∈ [1, 3]) and D1 ∼ D. In addition, the edge from C
to D (labeled with fa≤2sa≤2) in Q2 is mapped to a path
C3

fa−→ C1
sa−→ D1 in G; similarly for other edges in Q2.

Observe that the node pair (C1, B1) in G is not a
match of the edge (C,B) in Q2, since there exists no path
in G from C1 to B1 that satisfies fn. In light of a similar
reason, (C1, D1) in G is not a match of the edge (C,D)

in Q2, although there exists a path C1
fa−→C2

fa−→C1
sa−→D1

in G that satisfies fa≤2sa≤2. 2

Remark. (1) RQs are a special case of PQs, which consist
of two nodes and a single edge.
(2) Bounded simulation [20] is a special case of PQs,
by only allowing patterns in which (a) there is only a
single symbol c in Σ, i.e., only a single edge type is
allowed, and (b) all edges are labeled with either c≤k or
c+, where k is a positive integer.

One can readily verify the following, which confirms
that the semantics of PQs is well defined.

Proposition 2.1: For any data graph G and any graph
pattern query Qp, there is a unique result Qp(G). 2

Proof: (i) We first show that there exists a query result.
We consider all possible sets of {(e, Se) | Se is a set of
node pairs in G for each edge e in Qp }, which satisfy
conditions (1) and (2) of the semantics of PQs. Note that
those sets are not necessarily maximum, and the number
of such possible sets is finite.

We define the query result to be a set with the max-
imum size, which, as will be seen shortly, is unique. If
there exists an edge e such that Se = ∅ in the set, the
query result is ∅ by condition (3) of the semantics of PQs.

(ii) We then show the uniqueness by contradiction. As-
sume that there exist two distinct maximum query re-
sults Q1

p(G) and Q2
p(G). We then show that there exists

a result larger than both Q1
p(G) and Q2

p(G). Given two
such sets S1 = {(e, S1

e) | e is an edge in Qp} and S2 =
{(e, S2

e) | e is an edge in Qp}, we define the union of
S1 and S2 as {(e, S1

e ∪ S2
e) | e is an edge in Qp}, de-

noted by S1 ∪ S2. Observe that Qip is possibly empty
when Sie is empty for some e, where i ∈ [1, 2]. Let
Qp(G) = Q1

p(G) ∪ Q2
p(G). By the definition of PQs,

one can readily verify that Qp(G) is a query result larger
than both Q1

p(G) and Q2
p(G). This contradicts the as-

sumption that both Q1
p(G) and Q2

p(G) are maximum.
By (i) and (ii) above, we have the conclusion. 2

3 Fundamental Graph Queries Problems

We next investigate containment, equivalence and min-
imization of graph queries. As remarked earlier, these
problems are important for any query language [2]. We
focus on graph pattern queries (PQs), but state the rel-
evant results for reachability queries (RQs).

3.1 Containment and Equivalence

We first study containment and equivalence of PQs.

Containment. Given two PQs Q1 = (V 1
p , E1

p , f
1
v , f

1
e)

and Q2 = (V 2
p , E2

p , f
2
v , f

2
e), we say that Q1 is contained

in Q2, denoted by Q1 v Q2, if there exists a mapping
λ from E1

p to E2
p such that for any data graph G and

any edge e in Q1, Se ⊆ Sλ(e), where (e, Se) ∈ Q1(G),
(λ(e), Sλ(e)) ∈ Q2(G), and Q1(G), Q2(G) are the query
results of Q1, Q2 on G, respectively.

Intuitively, the mapping λ serves as a renaming func-
tion such that Q1(G) is mapped to Q2(G) after the re-
naming. For an edge e = (u1, u2) in Q1, let λ(e) =
(w1, w2). Then Q1 v Q2 as long as for any data graph
G and any node v in G, (1) if v ∼ u1, then v ∼ w1,

6
Frontiers of Computer Science in China

Fig. 3 Example for containment and equivalence

denoted as u1 ` w1; and (2) u2 ` w2. Moreover, (3)
L(fe) ⊆ L(fλ(e)), denoted as e |= λ(e).

Example 3.1: Consider three PQs given in Fig. 3, in
which all Bi’s (i ∈ [1, 3]) carry the same predicates; sim-
ilarly for all Cj ’s (j ∈ [1, 6]). Denote by λi,j a mapping
from Qi to Qj .

(1) Q2 v Q1: there exists a mapping λ2,1, where λ2,1(B2,
C4) = (B1, C1). Note that the mapping is not unique,
e.g., both λ2,1(B2, C4) = (B1, C2) and λ2,1(B2, C4) =
(B1, C3) are valid mappings.

(2) Q2 v Q3, by letting λ2,3(B2, C4) = (B3, C5).

(3) Q3 v Q1, indeed, one can define λ3,1(B3, C5) = (B1,
C1) and λ3,1(B3, C6) = (B1, C3).

(4) Q1 v Q3, by letting λ1,3(B1, C1) = (B3, C5), λ1,3(B1,
C2)=(B3, C5) and λ1,3 (B1, C3)=(B3, C6). 2

Equivalence. Given two graph pattern queries Q1 and
Q2, we say that Q1 and Q2 are equivalent, denoted by
Q1 ≡ Q2, if Q1 v Q2 and Q2 v Q1.

For instance, for Q1 and Q3 of Fig. 3, we have that
Q1 ≡ Q3, since Q1 v Q3 and Q3 v Q1 by Example 3.1.

For any PQs Q1 and Q2, observe that Q1 ≡ Q2

does not necessarily imply that Q1(G) = Q2(G) for
a data graph G. Nevertheless, there exist mappings
λ1,2 and λ2,1 such that λ1,2(Q1(G)) ⊆ Q2(G) and
λ2,1(Q2(G)) ⊆ Q1(G), where λ(Q(G)) stands for {(λ(e),
Sλ(e)) | (e, Se) ∈ Q(G)}. That is, Q1(G) and Q2(G) are
mapped to each other after the renaming by λ1,2 and
λ2,1, respectively.

Complexity bounds. We next establish the complexity
bounds of the containment and equivalence problems for
PQs. We first present a revision of similarity [26].

Consider two PQs Q1 = (V 1
p , E1

p , f
1
v , f

1
e) and Q2 =

(V 2
p , E2

p , f
2
v , f

2
e). We say that Q2 is similar to Q1, de-

noted by Q1 E Q2, if there exists a binary relation
Sr ⊆ V 1

p × V 2
p such that

(1) for any (u1, w1) ∈ Sr, (a) w1 ` u1, and (b) for
each edge e = (u1, u2) ∈ E1

p , there exists an edge e′
= (w1, w2) ∈ E2

p such that (u2, w2) ∈ Sr and e′ |= e; and
(2) for each edge e′ = (w,w′) ∈ E2

p , there exists an edge
e = (u, u′) ∈ E1

p such that (a) (u,w) ∈ Sr, (u′, w′) ∈ Sr,
and (b) e′ |= e.

Example 3.2: Recall PQs Q1 and Q2 from Example 3.1.
One can verify that Q1 E Q2. Indeed, there exists
a binary relation Sr = {(B1, B2), (C1, C4), (C2, C4),
(C3, C4)}, which satisfies the conditions of the revised
similarity given above:
(1) for each (u,w) ∈ Sr, w ` u (the condition (1)(a));
(2) for each edge e in Q1 (i.e., (B1, C1), (B1, C2) and
(B1, C3)), there exists an edge e′ in Q2 (i.e., (B2, C4))
such that e′ |= e, since L(h≤1) is contained in L(h≤1),
L(h≤2) and L(h≤3) (the condition (1)(b)); and
(3) for the edge e′ = (B2, C4) in Q2, there is an edge
e′=(B1, C1) in Q1 such that e′|=e (the condition (2)). 2

The relationship between the revised graph similarity
and the containment of PQs is shown below.

Lemma 3.1: Given two PQs Q1 and Q2, Q1 v Q2 if
and only if Q1 is similar to Q2 (i.e., Q2 E Q1). 2

Proof: (1) Assume first Q1 v Q2. We next show Q2 E
Q1 by proof by contradiction. Suppose that Q2 6E Q1, we
construct a data graph G from Q1 such that Q1 6v Q2,
which contradicts the assumption.

Assume w.l.o.g. that Q1 = (V 1
p , E

1
p , f

1
v , f

1
e). The data

graph G(V,E, fA, fC) is constructed from Q1 as follows.
(a) For each node u ∈ V 1

p , create a node u′ ∈ V such that
fA(u′) satisfies f1v (u), and (b) for each edge (u1, u2) ∈
E1
p , create a path from nodes u′1 to u′2 in G, passing

through only a set of dummy nodes satisfying f1e (u1, u2).
If Q2 6E Q1, either condition (1) or condition (2) of the
revised similarity is violated. No matter which condition
is violated, we can easily refine the data graph G given
above so that Q2 6v Q1 when evaluated on G.

(2) Conversely assume that Q2 E Q1. We next show
Q1 v Q2. Since Q2 E Q1, there exists a similarity rela-
tion Sr from Q2 to Q1. By the definition of the revised
similarity, we can readily construct a mapping λ from
the edges in Q1 to the edges in Q2 based on Sr, and we
then prove that the λ is indeed what we need.

Consider a data graph G. For any edge e = (w1, w2)
in Q1 with λ(e′) = (u1, u2) in Q2, we have the following:
(a) for any graph node v, if v ∼ w1, then v ∼ u1 since
w1 ` u1, and if v ∼ w2, then v ∼ u2 since w2 ` u2; and
(b) by the semantics of PQs, for any (v1, v2) ∈ Se, we can
easily show that (v1, v2) ∈ Sλ(e′), where (e, Se) ∈ Q1(G)
and (λ(e′), Sλ(e′)) ∈ Q2(G), i.e., Se ⊆ Sλ(e). From this
Q1 v Q2 immediately follows.

From (1) and (2) above Lemma 3.1 follows. 2

It is known that graph similarity is solvable in
quadratic time [26]. Extending the techniques of [26]
by leveraging Lemma 3.1, one can verify the following.

Theorem 3.2: For PQs Q1 and Q2, it is in cubic time
to determine whether Q1 v Q2 and Q1 ≡ Q2. 2

To prove this, we first show the following for RQs,

Front. Comput. Sci. China
7

which are a special case of PQs.

Proposition 3.3: For RQs Q1 and Q2, it is in quadratic
time to check whether Q1 v Q2 and Q1 ≡ Q2. 2

Proof: Consider two RQs Q1 = (u1, u2, fu1
, fu2

, fe1) and
Q2 = (w1, w2, fw1

, fw2
, fe2), where fu1

, fu2
, fw1

, and fw2

are satisfiable. It is easy to verify that Q1 v Q2 if and
only if u1 ` w1, u2 ` w2, and L(fe1) ⊆ L(fe2). Hence,
it suffices to show the following. (1) testing u1 ` w1 can
be done in O(|fu1

||fw1
|) time; (2) testing u2 ` w2 can

be done in O(|fu2
||fw2

|) time; and (3) testing L(fe1) ⊆
L(fe2) can be done in linear time. For if these hold,
then one can check whether Q1 v Q2 in quadratic time.
Moreover, one can decide whetherQ1 ≡ Q2 by inspecting
whether Q1 v Q2 and Q2 v Q1, both in quadratic time.

We next verify these one by one.
(1) We first show that testing u1 ` w1 can be done in
O(|fu1 ||fw1 |) time.

Observe that u1 ` w1 if and only if each sub-formula
A op a in fu1 is implied by fw1 . There are in total four
cases to consider, based on the type of op.

Case (a). When op is =. We first find (i) the small-
est value a< in fw1

associated with the attribute A and
the operator <; (ii) the smallest value a≤ in fw1 associ-
ated with the attribute A and the operator ≤; (iii) the
largest value a> in fw1

associated with the attribute A
and the operator >; and (iv) the largest value a≥ in fw1

associated with the attribute A and the operator ≥.
If a≥ = a≤, then A op a is implied by fw1

. If not, it
further checks whether A = a appears in fw1

. If ‘yes’,
then A = a is implied by fw1

.

Case (b). When op is ≤. Again, it suffices to find the
values a<, a≤, a>, a≥ and a=. Then A op a is implied
by fw1

iff a< ≤ a, a≤ ≤ a and a= ≤ a.
Case (c). When op is <, ≥ or >, it is similar to case (b).

Case (d). When op is 6=. Again, we find the values a<,
a≤, a>, a≥ and a=. Then A op a is implied by fw1

iff
a< > a and a≤ > a, a> < a and a≥ < a, a= 6= a, or
A 6= a appears in fw1 .

The checking takes O(|fw1
|) time in all these cases.

(2) Similar to (1), we can show that testing u2 ` w2 can
be done in O(|fu2

||fw2
|) time.

(3) Finally, we show that testing L(fe1) ⊆ L(fe2) can be
done in linear time. Note that we use a restricted form
of regular expressions, as defined in Section 2. In such a
regular expression F , we define the length of an atomic
component c, c≤k or c+ to be 1. Hence, the length of
F , denoted by |F |, is simply the number of its atomic
components.

To determine whether L(fe1) ⊆ L(fe2), we sequen-
tially scan fe1 and fe2 once. It is easy to verify that for
any two regular expressions F1 and F2, if L(F1) ⊆ L(F2),
then |F1| = |F2|. It suffices to consider the following

cases in the sequential scanning process:
Case (a). L(ck1ck2 . . . ckn) ⊆ L(ck

′
1ck

′
2 . . . ck

′
n), where

(k1 + . . .+ kn) ≤ (k′1 + . . .+ k′n).

Case (b). L(ck11 c
k2
2 . . . cknn) ⊆ L(c

k′1
1 c

k′2
2 . . . c

k′n
n), where

(k1 + . . . + kn) ≤ (k′1 + . . . + k′n), and, moreover, ci is
either ci or _ for each i ∈ [1, n].
Case (c). The + operator is treated as an integer, but is
larger than any positive integer k.

For each case above, it can be tested in linear time.
Putting all these together, we conclude that testing
L(fe1) ⊆ L(fe2) can be done in linear time. 2

By using Proposition 3.3 and extending the algorithm
for computing standard graph simulations [26], we are
now ready to prove Theorem 3.2.

Proof of Theorem 3.2. It suffices to show that check-
ing whether Q1 v Q2 is in cubic time. We next de-
velop an algorithm to test whether Q1 v Q2, by testing
whether Q1 is similar to Q2 (i.e., Q2 E Q1) based on
Lemma 3.1. It consists of the following steps:
(i) First, determine whether u ` w for all nodes u in Q1

and all nodes w in Q2. This is doable in quadratic time,
as verified in the proof of Proposition 3.3.
(ii) Second, determine whether e |= e′ for all edges e in
Q1 and all edges e′ in Q2. This runs in quadratic time,
as shown in the proof of Proposition 3.3.
(iii) Third, employ the algorithm for graph simulation
in [26] to compute the maximum relation Sr from Q2 to
Q1. The algorithm [26] runs in quadratic time.
(iv) Finally, test whether the relation Sr satisfies the
condition (2) of the revised graph similarity. This can
be done in cubic time, following from (ii) above.

The correctness of the above algorithm is guaranteed
by Lemma 3.1, and in total it runs in cubic time. 2

Remark. The equivalence problem for standard regular
expressions is pspace-complete [27]. However, for the
restricted regular expressions defined in Section 2, their
equivalence problem is much simpler – it is in linear time.
The gap between the two complexity bounds justifies the
choice of the subclass F of regular expressions for RQs
and PQs: those regular expressions have sufficient ex-
pressive power to specify edge relationships commonly
found in practice, and moreover, allow efficient static
analysis of fundamental properties.

3.2 Minimizing Graph Pattern Queries

A problem closely related to query equivalence is query
minimization. As remarked earlier, query minimization
often yields an effective optimization strategy. It has
been studied for, e.g., relational conjunctive queries [2]
and XML tree pattern queries [13, 35, 47]. For all the
reasons that query minimization is important for rela-
tional queries and XML queries, we also need to study

8
Frontiers of Computer Science in China

Fig. 4 Non-isomorphic equivalent minimum PQs

the minimization of graph queries.
For a PQ Q = (Vp, Ep), we define its size |Q| = |Vp|+

|Ep|, a metric commonly used for pattern queries [13].
To simplify the discussion, we assume Q is connected.

Minimization. Given a PQ Q = (Vp, Ep, fv, fe), the
minimization problem is to find another PQ Qm =
(V mp , Emp , f

m
v , f

m
e) such that (1) Qm ≡ Q, (2) |Qm| ≤

|Q|, and (3) no other such Q′ has size |Q′| < |Qm|. We
refer to Qm as a minimum equivalent PQ of Q.

Remark. (1) A PQ may have multiple minimum equiva-
lent PQs. Moreover, these PQs may not be isomorphic to
each other, although they have the same size. Figure 4
shows such an example, where both Q2 and Q3 are min-
imum equivalent PQs of Q1 and |Q2| = |Q3|, but they
are not isomorphic.
(2) We ignore regular expressions in the minimization
analysis since for those in the particular subclass F
used in RQs and PQs, it takes linear time to minimize
them. In addition, as will be seen from our algorithms
in Section 5, minimizing RQs has little impact on their
complexity. This would be, however, no longer the case
if general regular expressions were adopted. This further
justifies the choice of F in the definition of PQs.

The minimization problem for RQs is trivial for the
reason stated above. Below we focus on minimization of
PQs. The last main result of the section is as follows.

Theorem 3.4: Given any PQ Q, a minimum equivalent
PQ of Q can be computed in cubic time. 2

To prove Theorem 3.4, we develop an algorithm that,
given a pattern queryQ as input, finds a minimum equiv-
alent PQ Qm of Q in cubic time.

To present the algorithm, we first introduce several no-
tions that the algorithm uses. Recall the revised graph
similarity relation Sr defined in Section 3.1. We say that
two nodes u,w in Q are simulation equivalent if and only
if (u,w) ∈ Sr and (w, u) ∈ Sr. The equivalence rela-
tion Seq consists of all the node pairs that are simulation
equivalent. We denote the set of equivalence classes in-
duced by Seq as EQ, where each equivalence class in EQ
is a set of nodes that are pairwise simulation equivalent.

Note that if u and v are simulation equivalent, then
u ` w and w ` u. Intuitively, this suggests that any two
nodes in the same equivalence class should be treated as

Algorithm minPQs

Input: PQ Q = (Vp, Ep, fv, fe).
Output: a minimum equivalent PQ Qm of Q.

1. compute the maximum revised graph similarity Sr over Q;
2. compute the node equivalence classes EQ based on Sr;

/* construct an equivalent query */
3. construct V m

p and Em
p for Qm;

4. refine V m
p and Em

p ;
5. construct an equivalent query Qm;

/* construct a minimum equivalent query */
6. remove redundant edges in Qm;
7. remove isolated nodes in Qm;
8. return Qm.

Fig. 6 Algorithm minPQs

a single node for any queries. Based on this, the idea
of minPQs is to (1) identify these equivalent nodes, (2)
construct an equivalent query by “merging” these nodes
into a single node and (3) remove redundant nodes and
edges to construct a minimum equivalent query.

The algorithm, referred to as minPQs, is outlined in
Fig. 6. It has the following three steps. Given a PQ
Q(Vp, Ep), (1) minPQs first preprocesses Q by computing
the maximum revised graph similarity Sr as well as the
node equivalence classes EQ based on Sr; (2) by treating
each equivalence class in EQ as a single node, it deter-
mines the edges for all these nodes, and constructs an
equivalent, yet not necessarily minimum query Qm for
Q; (3) minPQs then identifies and removes redundant
edges and nodes from Qm, and returns it as a minimum
equivalent query. We next illustrate each step as follows.

Step 1: Computing Sr and EQ (lines 1-2). As a prepro-
cessing step, minPQs first determines whether u ` w for
all node pairs u,w in Q, and then determines whether
e |= e′ for all edge pairs e, e′ in Q. After that, the algo-
rithm computes the maximum revised similarity relation
Sr by employing an algorithm for standard graph sim-
ulations, e.g., [26]. It next identifies the nodes that are
simulation equivalent, and computes EQ accordingly.

Example 3.3: Consider the PQ Q1 shown in Fig. 5,
where (a) nodes B1 and B2 have the same predicate,
(b) all those nodes labeled with C (Ci, i ∈ [1, 5]) have
the same predicate, and (c) all those nodes with distinct
labels (ignoring subscripts) have different predicates. For
briefty, we only explicitly annotate the predicates of the
nodes labeled with H and J . Given these, algorithm
minPQs works as follows.
(1) It first computes the maximum similarity Sr on
Q1, which is {(R,R), (Bi1 , Bj1), (Ci2 , Cj2), (D,D),
(Hi3 , Hj3), (Ji4 , Jj4)}, where 1 ≤ i1, j1 ≤ 2, 1 ≤ i2, j2 ≤
5, 1 ≤ i3 ≤ j3 ≤ 3, and 1 ≤ i4 ≤ j4 ≤ 3.
(2) The set EQ of equivalence classes is derived from the
similarity relation Sr. For Q1, EQ consists of eq0 ={R},

Front. Comput. Sci. China
9

Fig. 5 Example for minimizing graph pattern queries

eq1 = {B1, B2}, eq2 = {C1, C2, C3, C4, C5}, eq3 = {D},
eq4 = {H1}, eq5 = {H2}, eq6 = {H3}, eq7 = {J1}, eq8 =
{J2}, and eq9 ={J3}. 2

Step 2: Constructing an equivalent query Qm (lines 3-5).
Algorithm minPQs first constructs the nodes and edges of
Qm (line 3). For each equivalence class Eq ∈ EQ, minPQs
initializes a corresponding query node eq and constructs
the node set V mp for Qm. It then determines the edge set
Emp of Qm as follows. For any two equivalence classes eq1

and eq2 in EQ, let E(eq1, eq2) be the set of edges from
the nodes in eq1 to the nodes in eq2, i.e., E(eq1, eq2) =
{e | e = (u,w) ∈ Ep, u ∈ eq1, w ∈ eq2}. If E(eq1, eq2) is
nonempty, minPQs adds an edge (eq1, eq2) to Emp .

Algorithm minPQs then refines the pattern query
Qm by (a) removing redundant edges, and (b) making
“copies” of nodes in V mp to transform Qm from multi-
graph to a simple graph (line 4). More specifically,
• Qm may contain redundant edges. We say an edge e

is redundant in E(eq1, eq2) if (1) there exists another
edge e′ in E(eq1, eq2) such that L(fe) = L(f ′e), or (2)
there exist two other edges e1 and e2 in E(eq1, eq2)
such that L(fe1) ⊆ L(fe) ⊆ L(fe2). For each pair
eq1 and eq2, minPQs removes redundant edges from
E(eq1, eq2), and updates Emp accordingly.
• Moreover, Qm may be a multigraph [6], i.e., there

may exist multiple edges (with different labels) be-
tween two nodes in Qm. To construct Qm as a sim-
ple graph in which each pair of nodes are connected
by at most a single edge, minPQs determines the
number of copies N(eq) for each nodes, which is de-
fined to be the maximum number of non-redundant
edges in E(eq′, eq) for all eq′ ∈ EQ. Here eq′ and eq
may refer to the same edge. It then extends V mp by
making N(eq) copies of node eq.

After both V mp and Emp are refined, algorithm
minPQs proceeds to construct an equivalent query
Qm(V mp , Emp , f

m
v , f

m
e) as follows (line 5).

1. For each eq in EQ, it includes into V mp a set C(eq)

= {eq1, . . . , eqN(eq)} of N(eq) nodes. For all nodes
u in C(eq) (eq ∈ EQ), it sets fmv (u) = fv(w), where
w ∈ eq.

2. Let E(eq1, eq2) be the set of non-redundant edges
from eq1 to eq2 in EQ. For each eqi1 (i ∈ [1, N(eq1)])
in C(eq1), it randomly chooses |E(eq1, eq2)| nodes
from C(eq2), and includes in Emp a set of |E(eq′, eq)|
edges from eqi1 to those nodes. For each new
edge enew, it randomly chooses a distinct edge e in
E(eq′, eq), and sets fenew

= fe.

Example 3.4: Recall PQ Q1 in Fig. 5. Consider
two equivalence classes eq1 = {B1, B2} and eq2 =
{C1, C2, C3, C4, C5} in EQ, and let E(eq1, eq2) be the
set of edges from the nodes in eq1 to the nodes in eq2.

(1) There are totally five edges in E(eq1, eq2), among
which edge e = (B1, C2) with fe = h≤2 is a redundant
edge. To see this, observe that there are two edges e1 =
(B1, C1) and e2 = (B1, C3), where fe1 = h≤1, fe2 = h≤3,
and thus, L(fe1) ⊆ L(fe) ⊆ L(fe2) (see Section 3.1).
Algorithm minPQs thus removes e from Qm. Similarly,
edge (B1, C1) and (B2, C3) are removed, and eq1 and eq2

are connected by two edges (B1, C3) and (B2, C4).

(2) The number N(eq1) of the copies of node eq1 in EQ is
determined by the maximum number of non-redundant
edges in E(eq1, eq2), which is 2. Similarly, N(eq2) is 2.

(3) After the non-redundant edges and the number of
copies for equivalence classes in EQ are determined, an
equivalent query Q2 for Q1 is constructed, as shown in
Fig. 5, by connecting (copies of) equivalence classes with
non-redundant edges. 2

Step 3: Constructing a minimum Qm (lines 6-8). Al-
gorithm minPQs further removes redundant nodes and
edges for query Qm in this phase. (a) It first re-computes
the maximum revised graph similarity relation Srq on
Qm. (b) It then removes redundant edges. We say that
an edge e = (u, u′) in Qm is redundant if there exist two
edges e1 = (u1, u

′
1) and e2 = (u2, u

′
2) in Qm such that

(u, u1) ∈ Srq, (u2, u) ∈ Srq, (u′, u′1) ∈ Srq, (u′2, u
′) ∈ Srq,

e1 |= e, and e |= e2. Note that here we use a different
notion to identify redundant edges from the one in step
2. All such redundant edges in Qm are removed at this
step (line 6). (b) We say node u in Qm is isolated if
there are no edges starting from or ending with the node

10
Frontiers of Computer Science in China

u in Qm. All isolated nodes in Qm are removed at this
step (line 7). Algorithm minPQs then returns Qm as a
minimum equivalent query of Q (line 8).

Example 3.5: Recall that queryQ2 of Fig. 5 is an equiv-
alent query for Q1. To remove redundant edges from Q2,
algorithm minPQs first computes the maximum revised
similarity S′r on Q2. It then identifies edge (D,H2) and
(H2, J2) as redundant edges. After these edges are re-
moved, Q2 is updated to be Q3 as shown in Fig. 5.

Algorithm minPQs then identifies isolated nodes in the
updated query Q3, which are nodes H2 and J2. These
nodes are then removed from Q3. After all the isolated
nodes are removed, the query Q3 becomes Q4 as shown
in Fig. 5. The algorithm then returns Q4 as a minimum
equivalent query of the query Q1. 2

To complete the proof of Theorem 3.4, we next show
the correctness and complexity of algorithm minPQs.

Correctness. It suffices to show that (I) Qm ≡ Q, and
(II) that Qm is minimum in size, i.e., there is no other
equivalent query Q′m smaller than Qm.

(I) We first show that Qm ≡ Q, by proving that opera-
tions in the algorithm preserve the query equivalence.
(1) Qm ≡ Q after step 2 of minPQs (line 5). To see this,
we only need to show that Q E Qm and Qm E Q.
(a) We construct a relation S′r from Vp of Q to V mp of Qm
as follows. Recall that each node vm ∈ V mp corresponds
to a set C(eq) = {eq1, . . . , eqN(eq)} of N(eq) copies of an
equivalence class eq in EQ. For each node u ∈ Q, S′r =
{u, equi} for each equi ∈ C(eq), where u ∈ eq.

We show that S′r is a revised similarity relation from Q
to Qm. Indeed, for any (u, equi) ∈ S′r, (i) u ` equi, since
equi is an equivalence class such that for each v ∈ equi,
u ` v and v ` u. (ii) For each edge e = (u,w) ∈ Ep, there
is an edge e′ = (equi, eqwi) ∈ Emp , where (w, eqwi) ∈ S′r
and e′ |= e. To see (ii), suppose that there exists an
edge e for which no other edge e′ satisfies the condition
given in (ii). If such an edge e′ originally exists for e,
but is removed from Emp as a redundant edge, then there
must exist at least e1 and e2 such that L(fe1) ⊆ L(f ′e)
⊆ L(fe2), where e1 serves as an edge that satisfies the
condition of (ii). This indicates that the removal of re-
dundant edges only reduce edge numbers, and preserves
the equivalence of the query. Given this, e′ does not ex-
ist before the removal of redundant edges. Thus, there
must exist a child w of u which does not belong to any
equivalence class eqwi, the child of all the equivalence
classes u belongs to. As a consequence, Sr is not the
correct maximum revised similar revision, which contra-
dicts the correctness of the standard graph simulation
algorithm [26]. (iii) Along the same lines, one can verify
that S′r guarantees the condition (2) of the revised sim-
ilarity relation. Thus, S′r is indeed a revised similarity
relation from Q to Qm, and Q E Qm.

(b) We construct S′−1r = {equi, u} for each (u, equi) ∈ S′r.
As argued above, we can show that Qm E Q with S′−1r

as the maximum revised similarity relation.
From (a) and (b) it follows that Qm ≡ Q.

(2) Qm ≡ Q after step 3 of algorithm minPQs (line 8).
Starting from an equivalent query Qm, minPQs only re-
moves redundant edges and isolated nodes, while pre-
serving query equivalence. To see this, recall S′r con-
structed in (1) above. Let S′′r = S′r \ {u, equ}, where
equ is a node removed as an isolated node. We show
that Q E Qm with S′′r as the revised similarity rela-
tion. Observe that the removal of redundant edges and
isolated nodes still preserves query equivalence. To see
this, recall that algorithm minPQs recomputes a revised
similarity relation Srq over Qm. Suppose that a redun-
dant edge e = (equ, equ′) is removed from Qm. Then
there exist two edges e1 = (u1, u

′
1) and e2 = (u2, u

′
2) in

Qm such that (u, u1) ∈ Srq, (u2, u) ∈ Srq, (u′, u′1) ∈ Srq,
(u′2, u

′) ∈ Srq, e1 |= e, and e |= e2. This indicates that
for any node uq ∈ Q, where (uq, u) ∈ S′′r , there must
exist a node u2 such that (uq, u2) ∈ S′′r if u becomes an
isolated node that can no longer match uq. Moreover,
Srq is correctly computed via a standard graph simula-
tion algorithm [26]. Thus, Q E Qm.

We construct S′′−1r = {equi, u} for each (u, equi) ∈ S′′r ,
which can be shown as the revised similarity relation
from Qm to Q. Thus Qm E Q. This shows that Qm ≡ Q.

From (1) and (2) it follows that Q ≡ Qm after minPQs
terminates. This completes the proof of (I).

(II) We now show that Qm is a minimum equivalent
query of Q. Consider a PQ Q = (Vp, Ep) and the equiv-
alent query Qm returned by algorithm minPQs.

Assume that there exists a PQ Q′ such that Q′ ≡ Qm
and |Q′| < |Qm|. We show that |Q′| = |Qm|, a con-
tradiction. Let EQm and EQ′ be the equivalence classes
for Qm and Q′, computed by algorithm minPQs, respec-
tively. It suffices to show the following, which indicates
|Qm| = |Q′|: (1) Qm and Q′ have the same number of
nodes, i.e., |EQm| = |EQ′|, and (2) Qm and Q′ have the
same number of edges. To prove this, we only need to
show that for each pair of equivalence classes eq1 and
eq2 in EQm, |Em(eq1, eq2)| = |E′(f(eq1), f(eq2))|, where
Em(eq1, eq2) is the set of edges from the nodes in eq1 to
the nodes in eq2 in Qm; similarly for E′(f(eq1), f(eq2)).
(1) We first show |EQm| = |EQ′| by giving a bijective
mapping f from EQm to EQ′. Since Qm ≡ Q′, we
have that Qm E Q′ and Q′ E Qm by Lemma 3.1.
Let Sr(Qm, Q′) and Sr(Q′, Qm) be the maximum revised
graph simulation relations for Qm E Q′ and Q′ E Qm,
respectively. We define the mapping f ⊆ EQm × EQ′

such that (eq, eq′) ∈ f if and only if there exist u ∈ eq
and u′ ∈ eq′ such that (u, u′) ∈ Sr(Qm, Q′) and (u′, u) ∈
Sr(Q

′, Qm). We show that f is a bijection as follows.
(a) We first show that f is a function from EQm to EQ′.
Assume by contradiction that there is an equivalence

Front. Comput. Sci. China
11

class eq in EQm and two equivalence classes eq′1 and eq′2
in EQ′ such that (eq, eq′1) ∈ f and (eq, eq′2) ∈ f . One
can see that eq′1 = eq′2 as follows.

• Since (eq, eq′1) ∈ f , there exist u1 ∈ eq and w1 ∈
eq′1 such that (u1, w1) ∈ Sr(Qm, Q′) and (w1, u1) ∈
Sr(Q

′, Qm).
• From (eq, eq′2) ∈ f it follows that there exist u2 ∈ eq

and w2 ∈ eq′2 such that (u2, w2) ∈ Sr(Qm, Q′) and
(w2, u2) ∈ Sr(Q′, Qm).
• By u1, u2 ∈ eq, we have that (u2, w1) ∈ Sr(Qm, Q′)

and (u1, w2) ∈ Sr(Qm, Q′).
• In light of (w1, u1) ∈ Sr(Q

′, Qm) and (u1, w2) ∈
Sr(Qm, Q

′), we have that w1 ` w2.
• From (w2, u2) ∈ Sr(Q

′, Qm) and (u2, w2) ∈
Sr(Qm, Q

′) it follows that w2 ` w1.

From these we can derive that eq′1 = eq′2 since w1 and
w2 are simulation equivalent. Hence f is a function.
(b) The function f is a bijection. Indeed, f is total since
it is induced by the revised similarity relation, which is
total. We next show that f is injective, i.e., for any two
different nodes eq1 and eq2 ∈ EQm, f(eq1) 6= f(eq2).
Suppose that there are two nodes eq1 and eq2 such that
f(eq1) = f(eq2) = eq′u in Q′. (i) For every child eq′1
of eq in Qm, there exist three edges e1 = (eq1, eq′1),
e2 = (eq2, eq′2) in Qm and e = (equ, eqv) in Q′, such
that (eq1, equ), (eq′1, eqv) ∈ Sr(Qm, Q

′), e1 |= e, and
(eq2, equ), (eq′2, eqv) ∈ Sr(Q′, Qm), e |= e2, by Qm ≡ Q′.
Thus, (eq1, eq2) ∈ Sr(Qm, Q

′). (ii) Similarly, we can
show that (eq2, eq1) ∈ Sr(Qm, Q

′). This tells us that
eq1 and eq2 are simulation equivalent. Since algorithm
minPQs computes the maximum revised similar relation
over Q, eq1 and eq2 should be in the same equivalence
class. This contradicts the assumption that eq1 6= eq2.
Thus, the function f is an injective function.
(c) We finally show that the mapping f is surjective.
This can be verified by proving that f− is a total and
injective function, via a similar argument as (b).

Putting (a), (b) and (c) together, we have that f is
a total, surjective and injective function. That is, f is
a bijection from the nodes of Qm to the nodes of Q′.
Therefore, Q′ and Qm have the same number of nodes.

(2) We show that for each pair of equivalence classes eq1

and eq2 in EQm, |Em(eq1, eq2)| = |E′(f(eq1), f(eq2))|.
Consider a pair (eq1, eq2) in EQm. Along the same lines
as above, we can construct a bijective mapping g from the
edges in Em(eq1, eq2) to the edges in E′(f(eq1), f(eq2))
such that L(fe) = L(fg(e)) for each edge in Em(eq1, eq2).

From (1) and (2) above it follows that |Q′| = |Qm|.
This completes the prove of (II). The correctness of al-
gorithm minPQs follows from (I) and (II). 2

Remark. The proof is inspired by the proof for minimiz-
ing Kripke structures based on graph simulations [11].
It is shown there that all minimum Kripke structures
are isomorphic. For graph pattern queries, however, two

minimum queries may not be isomorphic, as remarked
earlier in Figure 4. This makes the techniques used in
this proof different from those used in the proof of [11].

Complexity. We next show that algorithm minPQs in-
deed runs in cubic time, by showing that each of its three
steps, i.e., preprocessing (lines 1-2), equivalent query
construction (lines 3-5), and minimum equivalent query
construction (lines 6-8), can be done in cubic time.

Preprocessing (lines 1-2). The computation of the
maximum revised similarity Sr is in cubic time, i.e.,
O(|Vp||Ep||L|) time (line 1), via the graph simulation
algorithm [26]. Here L is the maximum length of the
regular expression over query edges. The node equiva-
lence classes EQ can be computed in O(|Vp|2) time [11].
More specifically, the computation of Sr and EQ requires
checking (1) whether u ` v for two query nodes u and v,
which is in quadratic time; and whether L(fe1) ⊆ L(fe2)
for two query edges e1 and e2, which is in O(L) time.
The total time of preprocessing phase is thus in O(|Q|3).

Equivalent query construction (lines 3-5). The construc-
tion of V mp and Emp is in O(|Q|) time (line 3). The re-
finement of V mp and Emp is in cubic time (line 4). The
construction of Qm is in O(|Q|) time, as |Qm| ≤ |Q|
(line 5). More specifically, checking redundant edges is
in O(|Emp |2|L|) time, and determining the copy number
of nodes in Qm is in O(|Emp |) time. Thus, the total time
for constructing Qm is in O(|Q|3) time.

Minimum equivalent query construction (lines 6-8). It
takes O(|Vp||Ep||L|) time to re-compute the revised sim-
ilarity relation Srq. Removing redundant edges in Qm
take O(|Emp |2|L|) time. It takes O(|Vp|) time to remove
isolated nodes. Thus, this phase is in O(|Q|3) time.

Putting these together, minPQs is in O(|Q|3) time. 2
From the correctness and complexity analyses of algo-

rithm minPQs, Theorem 3.4 immediately follows.
Observe that the complexity bounds of minimiza-

tion, containment and equivalence are all in the sizes of
queries, which are typically much smaller than the sizes
of data graphs in practice.

4 Evaluating Reachability Queries
In this section, we present two methods to answer RQs.
One employs a matrix of shortest distances between
nodes. It is in quadratic time, the same as its counter-
part for traditional reachability queries [44]. The other
adopts bi-directional breadth-first search BFS, and uti-
lizes an auxiliary cache to maintain the most frequently
asked items. It is used when maintaining a distance ma-
trix is infeasible for large data graphs.

Consider an RQ Qr = (u1, u2, fu1
, fu2

, fe) and a data
graph G = (V,E, fA, fC). For two nodes v1, v2 in V , we
want to determine whether vi matches ui (i∈ [1, 2]) and
moreover, whether there exists a path from v1 to v2 that

12
Frontiers of Computer Science in China

matches fe (see Section 2).

RQ with a single edge color. Below we start with a
special case when fe carries a single edge color, and then
consider the general case.
Matrix-based method. We use a 3-dimensional matrixM ,
where 2 dimensions range over data graph nodes and 1 di-
mension is for edge colors. For two nodes v1, v2 in graph
G, M [v1][v2][c] (resp. M [v1][v2][_]) records the length
of the shortest path from v1 to v2 via edges of color c
(resp. arbitrary colors). Capitalizing on M one can de-
tect in constant time whether v1 reaches v2 via a path
satisfying the constraint fe.

Assume that there are m distinct edge colors in G.
The matrix can be built in O((m + 1)|V |2 + |V |(|V | +
|E|)) time by using BFS [6]. Note that m is typically
much smaller than |V |. The matrix is pre-computed and
shared by all queries. Leveraging the matrix M , Qr can
be answered in O(|V |2) time by inspecting those nodes
that satisfy the search conditions specified by u1 and u2
in a query, using a nested loop.
Bi-directional search. The space overheadO((m+1)|V |2)
of the distance matrix, however, may hinder its applica-
bility. To cope with large graphs, we propose to maintain
a distance cache using hashmap as indices, which records
the most frequently asked items. If an entry for a node
pair (v1, v2) and a color c is not cached, it is computed at
runtime and the cache is updated with the least recently
used (lru) replacement strategy. To do this we adopt
a bi-directional BFS at runtime as follows. Two sets are
maintained for v1 and v2, respectively. Each set records
the nodes that are reachable from (resp. to) v1 (resp. v2)
only via edges of color c. We expand the smaller set at
a time until either the two sets intersect (i.e., the dis-
tance is the number of total expansions), or they cannot
be further expanded (i.e., unreachable). This procedure
runs in O(|V | + |E|) time. A similar technique is used
in [15], but it does not consider edge colors.

Compared with traditional BFS, the bi-directional
search strategy can significantly reduce the search
space, especially when edge colors are considered. For
instance, in the data graph G of Fig. 1, if a user
asks whether there exists a path from C2 to D1 satis-
fying the constraint fa+, we can immediately answer
no since no incoming edge to D1 is labeled with color fa.

RQ with multiple colors. We next extend the two
methods to evaluate a general RQ Qr. Assume the num-
ber of edge colors in fe is h.
Matrix-based method. We decompose Qr into h RQs:
Qri = (xi, yi, fxi , fyi , fei) (i ∈ [1, h]), where x1 = u1,
yk = u2, and we add yj = xj+1 (j ∈ [1, h−1]) as dummy
nodes between u1 and u2. Here each fei (i ∈ [1, h])
carries a single edge color, and a dummy node d bears
no condition, i.e., for any node v in G, v matches d.
Using the procedure for answering single-colored RQs, we

evaluate Qri from h to 1; we then compose these partial
results to derive Qr(G). This is in O(h|V |2) time, where
h is typically small and can be omitted.

Example 4.1: Recall the RQ Q1 from Fig. 1 with edge
constraint fe = fa≤2fn. The queryQ1 can be decomposed
into Q1,1 and Q1,2 by inserting a dummy node d between
C and B, where Q1,1 (resp. Q1,2) has an edge (C, d)
(resp. (d,B)) with edge constraint fa≤2 (resp. fn).

When evaluating Q1,2 on the graph G of Fig. 1, we get
Q1,2(G) = {(C3, B1), (C3, B2)}, since M [C3][B1][fn] = 1
andM [C3][B2][fn]=1. Similarly, by C3 ∼ d derived from
Q1,2(G), we get Q1,1(G) = {(C1, C3), (C2, C3)}. Com-
bining Q1,1(G) and Q1,2(G), we find Q1(G). 2

Bi-directional search. When a distance matrix is not
available, runtime search is used instead, for evaluat-
ing an RQ Qr = (u1, u2, fu1

, fu2
, fe). The bi-directional

search method can handle the regular expression fe,
without decomposing it. Intuitively, this can be done
by evaluating fe by iteratively expanding from (resp.
to) the nodes that may match u1 (resp. u2). In each
iteration, the candidate match set with a smaller size
will be expanded, and fe is partially evaluated. When
fe is fully evaluated, we examine the intersection of
the two sets to derive the result. This takes, however,
O(h|V |2(|V | + |E|)) time. Nonetheless, as will be seen
in Section 6, this method is able to process queries on
large data graphs, when maintaining a distance matrix
for those graphs is beyond reach in practice.

It should be remarked that although existing (index-
based) solutions for traditional reachability queries can-
not answer RQs studied in this paper, they can be lever-
aged as filters, i.e., we invoke our methods only after
those techniques decide that two nodes are connected
(possibly constrained by a set of labels).

5 Algorithms for Graph Pattern Queries
We next provide two algorithms to evaluate PQs. Given a
data graph G = (V,E, fA, fC) (simply written as (V,E))
and a PQ Qp = (Vp, Ep, fv, fe) (written as (Vp, Ep)), the
two algorithms compute the result Qp(G) of Q on G,
in cubic time in the size of G. The first algorithm is
based on join operations. The other is based on split,
an operation commonly used in verifications of labeled
transition systems (LTS, see, e.g., [37]).

5.1 Join-based Algorithm

We start with the join-based algorithm. It first com-
putes, for each node u in the PQ Qp, an initial set of
(possible) matches, i.e., nodes that satisfy the search
conditions specified by u. It then computes Qp(G) as
follows. (1) If Qp is a directed acyclic graph (DAG), the
query result is derived by a reversed topological order
(bottom-up) process, which refines the match set of each

Front. Comput. Sci. China
13

query node by joining with the match sets of all its chil-
dren, and by enforcing the constraints imposed by the
corresponding query edges. (2) If Qp is not a DAG, we
first compute the strongly connected components (SCC)
graph of Qp, a DAG in which each node represents an
SCC in Qp. Then for all the query nodes within each
SCC, their match sets are repeatedly refined with the
join operations as above, until the fixpoint of the match
set for each query node is reached.

Algorithm. The algorithm, referred to as JoinMatch,
is shown in Fig. 7. Besides Qp and G, it also takes a
boolean flag as input, indicating whether one opts to use
a distance matrix. Depending on flag, the algorithm de-
cides to use which method given in Section 4 to evaluate
the RQs embedded in Qp.

The algorithm uses the following notations. We use
u, v to denote nodes in the query Qp, and x, y, z for nodes
in the data graph G. (1) For each node u in Qp, we
initialize its match set mat(u) = {x |x ∈ V and x ∼ u}
(recall ‘∼’ from Section 2). (2) For each edge e = (u′, u)
in Qp, we use a set rmv(e) to record the nodes in G
that cannot match u′ w.r.t. edge e. (3) An SCC graph
of Qp = (Vp, Ep) is denoted as Qs = (Vs, Es), where
Cs ∈ Vs presents an SCC in Qp, and (C ′s, Cs) ∈ Es if
there exists v′ ∈ C ′s, v ∈ Cs such that (v′, v) ∈ Ep.

Algorithm JoinMatch first checks flag. If one wants
to use a distance matrix M but it is not yet available,
M is computed and Qp is normalized as Q′p (line 2), by
decomposing each RQ of Qp into simple RQs (i.e., each
edge only carries one color) via inserting dummy nodes.
Otherwise no normalization is performed (line 1). The
sets mat() and rmv() are then initialized (lines 3-4). The
SCC graph Qs of Q′p is then computed, by using Tarjan’s
algorithm [41] (line 5).

In a reversed topological order, JoinMatch processes
each node Cs of Qs as follows: the match set of each
query node in Cs is recursively refined until the fixpoint
is reached (lines 7-14). For each node u in Cs and each
edge e = (u′, u) (line 8), it computes the nodes in mat(u′)
that fail to satisfy the constraints of e, by invoking a pro-
cedure Join. The nodes returned by Join are maintained
in rmv(e) (line 9), which is then used to refine mat(u′)
(line 10). If the match set of any query node is empty, an
empty result is returned (line 11) and the algorithm ter-
minates. Otherwise, the rmv() sets of edges (u′′, u′) are
checked for possible expansion due to nodes that can-
not match u′ (lines 12-13). The query result is finally
collected (lines 15-16) and returned (line 17).

Procedure Join identifies nodes in mat(u′) that do not
satisfy the edge constraint imposed by e = (u′, u) or the
match set mat(u). It examines each node x′ in mat(u′)
(line 2). If there exists no node x in mat(u) such that
(x′, x) matches the regular expression fe(u′, u) (line 3),
x′ is pruned from mat(u′) and is recorded in premv(e)
(line 4). The algorithm returns premv(e) (line 5). Note

Input: query Qp = (Vp, Ep), data graph G = (V,E) and flag.
Output: the result Qp(G).

1. if !flag then Q′
p(V

′
p , E

′
p) := Qp;

2. else Q′
p := Normalize(Qp); compute the distance matrix M ;
/* if the matrix is not yet available */

3. for each u ∈ V ′
p do mat(u) := {x | x ∈ V , x ∼ u};

4. for each e ∈ E′
p do rmv(e) := ∅;

5.Qs := Sccgraph(Q′
p);

6. for each Cs of Qs in a reversed topological order do
7. do
8. for each edge e = (u′, u) ∈ E′

p where u ∈ Cs do
9. rmv(e) := Join(e,mat(u′),mat(u));
10. mat(u′) := mat(u′) \ rmv(e);
11. if mat(u′) = ∅ return ∅;
12. for each e′ = (u′′, u′) ∈ E′

p do
13. rmv(e′) := rmv(e′) ∪ Join(e′,mat(u′′),mat(u′));
14. while there is e=(u′, u)∈E′

p s.t. u∈Cs and rmv(e) 6=∅;
15. for each edge e = (u′, u) ∈ Ep s.t. u ∈ Cs do
16. Se :={(x′, x) | x′∈mat(u′), x∈mat(u), (x′, x)≈fe(e)};
17.return Qp(G) := {(e, Se) | e ∈ Ep}.

Procedure Join

Input: edge e = (u′, u) ∈ Ep, mat(u′), mat(u).
Output: premv(e) (a set of nodes that cannot match u′).

1. premv(e) := ∅;
2. for each x′ ∈ mat(u′) do
3. if there does not exist x ∈ mat(u) s.t. (x′, x) ≈ fe(e) do
4. premv(e) := premv(e) ∪ {x′};
5. return premv(e);

Fig. 7 Algorithm JoinMatch

that if a distance matrix is used (when flag is true), one
can check (x′, x) ≈ fe(e) (line 3) in constant time, for any
edge color and wildcard. Otherwise we use bi-directional
search to check the condition (Section 4).

Note that we provide the following options to han-
dle regular expressions. (1) If a distance matrix M is
available, a regular expression is decomposed into a set
of simpler regular expressions, each containing a single
color, to make use of matrixM . (2) Otherwise, the regu-
lar expressions are evaluated straightforwardly using bi-
directional search (see Section 4).

Example 5.1: Recall the pattern query Q2 and the data
graph G from Fig. 1. We show how JoinMatch evaluates
Q2 on G. For each node u in Q2, the initial and final
match sets are as follows.

node initial mat() final mat()

B {B1, B2} {B1, B2}
C {C1, C2, C3} {C3}
D {D1} {D1}

In a reversed topological order (lines 6-14), JoinMatch
repeatedly removes from mat() those nodes that do not
make a match, by using premv() from procedure Join.

14
Frontiers of Computer Science in China

There are two SCC’s: SCC1 and SCC2, consisting of
nodes {D} and {B,C}, respectively. JoinMatch starts
from node D and processes edge (C,D). The node C1 is
removed from mat(C), since it cannot reach D1 within
two hops colored fa, followed by edges within two hops
colored sa. When processing the edge (B,D), no nodes
in mat(B) can be pruned. In SCC2, the match sets
mat(B) and mat(C) are refined by recursively using the
edges (B,C), (C,B) and (C,C), and C2 is removed from
mat(C) as C2 cannot reach any node in mat(B) with 1
hop colored fn. The same result Q2(G) is found as illus-
trated in Example 2.3. 2

We show the correctness and complexity analysis for
the algorithm JoinMatch as follows.

Correctness. We show that the algorithm JoinMatch
correctly returns Qp(G). (1) It always terminates. In-
deed, for each node u′ in Qp, the set mat(u′) decreases
monotonically. (2) We show that after the for loop
(lines 6-14), each node recorded in mat(u′) is a match
of node u′. Denote the set of matches of u as matt(u

′).
We only need to show that for each node u′, mat(u′) =
matt(u

′) after the for loop.
We first show that JoinMatch preserves the invariant

that at any iteration of the for loop, for any node u′,
matt(u

′) ⊆ mat(u′). We show this by induction on the
iteration of the loop. (a) matt(u

′) ⊆ mat(u′) at the be-
ginning of the loop. (b) Assume that matt(u

′) ⊆ mat(u′)i
at iteration i of the loop. At iteration i+1, the set rmv(e)
is computed (line 9), where for each node v′ ∈ rmv(e),
there is no path satisfying the constraints of e, i.e., it
is not a match of u′. The match set mat(u′)i is refined
to mat(u′)i+1 by removing all these nodes that cannot
match u′. Thus, matt(u

′) ⊆ mat(u′)i+1.
The argument above shows that JoinMatch only re-

moves nodes that cannot match u′ from mat(u′). We
next show that after the loop, mat(u′) = matt(u

′). Sup-
pose that there exists a node v′ ∈ mat(u′) that cannot
match u′ after the loop. That is, there is an edge e =
(u′, u) such that v′ cannot satisfy the constraints of e.
Observe that rmv(e) contains at least one such node v′
after procedure Join (line 9 and line 13). This violates
the termination condition of the loop (line 14), and v is
to be removed from mat(u′) at some iteration (line 10).
Thus, mat(u′) = matt(u

′) after the loop, for each node
u′ in Qp. Putting these together, one can verify that
JoinMatch correctly computes the matches Qp(G).

Complexity. We analyze the complexity based on the
case that the distance matrix is used. The algorithm
consists of two phases: pre-processing (lines 1-5) and
match computation (lines 6-17).

Preprocessing (lines 1-5). This step takes O((m+1)|V |2+
|V |(|V | + |E|)) time to normalize Qp and compute the
distance matrix, each for a single color, where m is the
number of distinct edge colors, typically a small number

in real-life applications (lines 1-2). The initialization of
mat(u) and rmv(e) for each node u and edge e in Q′p takes
in total O(|V ||V ′p |+ |E′p|) time (lines 3-4). It takes linear
time O(|V ′p | + |E′p|) to compute Qs (line 5) [41]. Thus,
the preprocessing phase takes O((m+ 1)|V |2 + |V |(|V |+
|E|) + |V ||V ′p |+ (|V ′p |+ |E′p|)) time in total.
Match computation (lines 6-17). The for loop (lines 6-16)
is repeated O(|E′p|) times. For each edge e in E′p, proce-
dure Join takes O(|V |2) time (line 9). It takes O(|V |)
time to update mat(u) (line 10), rmv(e) (line 9) and
rmv(e′) (line 13), respectively. Putting these together,
the for loop is in O(|E′p||V |2) time. It takes O(|E′p||V |)
time to collect the result Qp(G). Thus, the match com-
putation is in total O(|E′p||V |2) time.

Putting these together, the algorithm is in O(|V ||E|+
|E′p||V |2) time. Notably, |E′p| and |V ′p | are bounded by
O(m|Ep|) and O(Vp + (m− 1)|Ep|), respectively.
Remark. Observe the following. (1) The distance matrix
can be computed in O((m+1)|V |2 + |V |(|V |+ |E|)) time
(line 2). The initialization of mat(u) is in O(|V ||V ′p |)
time. The normalization and SCC graph are both
bounded by O(|V ′p |+ |E′p|). (2) Clearly, if Qp is a DAG,
the loop takes a single bottom-up sweep for each node
in Qp, which naturally takes O(|E′p||V |2) time. Oth-
erwise, an auxiliary structure is maintained for each
node, recording its descendants removed from possible
matches, to avoid redundant check in the iterations of
the loop (lines 7-14). In this way, the loop is bounded
by O(|E′p||V |2) for PQs that are general graphs.

5.2 Split-based Algorithm

We next present the split-based algorithm. It treats
query nodes and data graph nodes uniformly, grouped
into “blocks”, such that each block B contains a set of
nodes in V ∪Vp from a data graph G = (V,E) and a PQ
Qp = (Vp, Ep). The algorithm creates a block for each
query node u, denoted as B(u), initialized with all nodes
x ∈ V such that x ∼ ui. It then computes a partition-
relation pair 〈par, rel〉, where par is set of blocks and rel
is a partial order over par. The pair 〈par, rel〉 is recur-
sively refined by splitting the blocks in par and rel based
on the constraints imposed by query edges. The process
proceeds until a fixpoint is reached, and then the result
of Qp is collected from the corresponding blocks of query
nodes in Vp, and the partial order over the blocks in rel.

The idea of split was first explored in LTS verifica-
tion [37], which deals with a single graph. Our algorithm
extends the idea to handle two graphs.

Algorithm. The algorithm, referred to as SplitMatch, is
shown in Fig. 8. It also needs the procedures mat() and
rmv() used by JoinMatch.

The algorithm first checks flag, and accordingly nor-
malizes the query Qp and computes the distance matrix
if needed (lines 1-3), along the same lines as JoinMatch.

Front. Comput. Sci. China
15

Input: a PQ Qp = (Vp, Ep), a data graph G = (V,E) and flag.
Output: the result Qp(G).

1. par := ∅; rel := ∅;
2. if !flag then Q′

p(V
′
p , E

′
p) := Qp;

3. else Q′
p := Normalize(Qp); compute the distance matrix M ;
/* if the matrix is not yet available */

4. for each u ∈ V ′
p do

5. mat(u) := {x | x∈V and x∼u}; B(u) := {u} ∪mat(u);
6. par := par ∪ B(u); rel := rel ∪ {(B(u),B(u)};
7. for each e = (u′, u) ∈ E′

p do compute rmv(e);
8. while there exists e = (u′, u) where rmv(e) 6= ∅ do
9. rmv := rmv(e); rmv(e) := ∅;
10. Split(e, 〈par, rel〉, rmv);
11. for each B ⊆ rmv do rel(B(u′)) = rel(B(u′)) \ B;
12. for each e′ = (u′′, u′) and each B ⊆ rmv do
13. for each x′′∈B(u′′) s.t. no x′∈B(u′), (x′′, x′)≈fe(e′) do
14. rmv(e′) = rmv(e′) ∪ {x′′};
15. for each e = (u′, u) ∈ Ep do
16. Se := {(x′, x) | x′ ∈ V, x ∈ V,B(x) ∈ rel(B(u)),

B(x′) ∈ rel(B(u′)) and (x′, x) ≈ fe(e)};
17. if Se = ∅ then return ∅;
18. return Qp(G) := {(e, Se) | e ∈ Ep}.

Procedure Split

Input: edge e = (u′, u) ∈ E′
p, pair 〈par, rel〉,

a node set SpltN ⊆ V .
Output: updated pair 〈par, rel〉.

1. for each B ∈ par do
2. B1 := B ∩ SpltN; B2 := B \ SpltN;
3. par := par ∪ {B1} ∪ {B2}; par := par \ {B};
4. rel(B1) := rel(B2) := {B1,B2};
5. return 〈par, rel〉;

Fig. 8 Algorithm SplitMatch

It then initializes the match set and block set of each
query node (line 5). In addition, it constructs the
partition-relation pair 〈par, rel〉 (line 6); it also initial-
izes rmv() for each query edge (line 7), a step similar
to its counterpart in JoinMatch. It then iteratively se-
lects and processes those query edges with a nonempty
rmv() set, i.e., edges for which the match set can be re-
fined (lines 8-14). The set of blocks par is split based on
rmv(e) in procedure Split, and rel is updated accordingly
(line 10). SplitMatch further extends the rmv() sets of
edges e′(u′′, u′) by checking if any node in mat(u′′) has
no descendants satisfying the constraints of e′ (lines 12-
14). The extended rmv(e′) is used to further refine par.

The process (lines 8-14) iterates until par can no longer
be split. The result is collected (line 16) and returned
(line 18). SplitMatch terminates and returns an empty
set, if the match set of any query edge is empty (line 17).

Procedure Split refines the pair 〈par, rel〉 when given a
set of nodes SpltN ⊆ V . Each block B ∈ par is replaced
by two blocks B1 = B∩SpltN and B2 = B\SpltN (line 2).
Since B is split and new blocks are generated, par and rel

are updated correspondingly (lines 3-4), and the refined
pair 〈par, rel〉 is returned (line 5).

Example 5.2: We show how SplitMatch evaluates the
PQ Q2 on the graph G of Fig. 1. For each node u in
Q2, SplitMatch initializes par, the set of blocks (Blks) as
shown in the table below, together with the relation rel
on the blocks. We also show the rmv() set of each edge,
with empty rmv() omitted.

initial par initial rel edge rmv() sets
Blk1 : {B,B1, B2} {Blk1,Blk1} (C,B) {C1, C2}
Blk2 : {C,C1, C2, C3} {Blk2,Blk2}
Blk3 : {D,D1} {Blk3,Blk3}

After the process of SplitMatch, the final par and rel
are shown in the following table. All the rmv() sets for
query edges are ∅. One can verify that during the while
loop (lines 8-14), the block set of node C is refined by
making use of rmv(C,B), resulting in a new block set
from which nodes C1 and C2 are absent; similarly for
the other blocks.

final par final rel
Blk1 : {B,B1, B2} {Blk1,Blk1}
Blk2 : {C,C3} {Blk2,Blk2}
Blk4 : {C1, C2} {Blk4,Blk2}, {Blk4,Blk4}
Blk3 : {D,D1} {Blk3,Blk3}

Algorithm SplitMatch identifies the same result as re-
ported in Example 2.3. 2

We next give the correctness and complexity analyses
for algorithm SplitMatch as follows.

Correctness. The algorithm returns Qp(G), since (1)
all blocks are initialized with query nodes and all their
possible matches; (2) the loop (lines 8-14) only drops
those nodes that fail to match query nodes constrained
by the query edges; (3) each graph node remaining in a
block is a match to the corresponding query node, i.e.,
satisfying all the edge constraints; and (4) each block
decreases monotonically. We provide details below.

We first introduce notations we shall use in the anal-
ysis. (a) Given a set of blocks Bs and a query edge
e with fe(e) = ck, we define prev(Bs) as the set of
blocks in G, such that for each block B ∈ prev(Bs)
and each node u ∈ B, there exists a node v in a block
of Bs, where (i) there is a shortest path from u to v
with all edges e′ in the path satisfying fC(e′) = c, and
(ii) the path has length bounded by k. (b) We say
that partition-relation pair 〈par, rel〉 over-approximates
S if for any edge e = (u′, u) ∈ Eq with fe(e) = ck,
rel(B(u′)) ⊆ ∪prev(e, rel(B(u))).

Using these notations, we next show that SplitMatch
maintains an invariant, namely, at any time, 〈par, rel〉
over-approximates S. We verify this by induction on the
iteration of the while loop (lines 8-14) as follows. (1)
The invariant is preserved when 〈par, rel〉 is initialized

16
Frontiers of Computer Science in China

(line 6). (2) Suppose that at iteration i the invariant is
maintained by 〈pari, reli〉. At iteration i + 1, (a) pari is
split based on a non-empty set rmv(e) for edge e ∈ Ep,
and reli is updated according to newly generated blocks
from pari (line 11). Recall that for an edge e = (u, v),
where fe(e) = ck, rmv(e) represents the set of nodes
which fail to satisfy the constraints of e. SplitMatch only
removes such nodes as a block from an existing block
in pari, which preserves the invariant. Thus, SplitMatch
maintains the invariant.

We finally show that the induced relation S (lines 15-
16) is the query result when the while loop terminates
(lines 8-14). Observe that when SplitMatch terminates,
for every edge e = (u, v), the set rel(B(u)) contains the
desirable blocks, each of them (a) contains a set of nodes
satisfying the constraint of edge e, guaranteed by the
invariant, and (b) can no longer be further partitioned
by rmv(e′) of any other edge e′, i.e., it contains no node
that is not a match, since all rmv(e′) is empty for any
edge e (line 8). The union of these blocks is thus exactly
the match set of u. From these it follows that SplitMatch
correctly computes the query result.

Complexity. The complexity analysis below is based
on the assumption that SplitMatch uses the distance ma-
trix as index. The algorithm consists of three phases:
pre-processing (lines 1-7), match computation (lines 8-
14), and result collection (lines 15-18). We give their
complexity bounds as follows.

Pre-processing (lines 1-7). The pre-processing phase is
in O((m + 1)|V |2 + |V |(|V | + |E|) + |V ′p ||V | + |E′p||V |2)
time, similarly to its counterpart in JoinMatch, where m
is the number of distinct edge colors.

Match computation (lines 8-14). We denote the initial
par at line 6 as parin, and the final refined par as parout.
For match computation process (lines 8-14), observe that
(1) at each iteration i, each pari is a refinement of pari−1
at iteration i− 1, (2) rmv(e)i and rmv(e)i−1 are disjoint,
and (3) the total number of newly generated blocks at
line 10 is 2(|parout| − |parin|). As a result, the overall
time complexity of the code at line 10 is O(|Ep||parout|).
The time complexity for the inner for loop at line
11 is O(|parout||V |2), with the maintenance of a 2-D
matrix along the same line in algorithm JoinMatch for
each edge e(u′, u) ∈ Ep and mat(u′). The Split proce-
dure is in O(|V |) time, thus the total time at line 8 is
O(|parout||V |). Putting these together, the total time in
the second phase (lines 8-14) is in O(|parout||V |2).

Result collection (lines 15-18). There are totally |Ep|
edges, and for each edge e = (u, v), there are at most
|V | matches for u and v, respectively. Thus, the result
collection is in O(|Ep||V |) time.

Remark. The set parout represents the finally refined
par, which is bounded by O(|V ||V ′p |). A closer observa-
tion of the complexity of SplitMatch tells us that |parout|

is between |V ′p | and |V ′p ||V |, i.e., the algorithm is in
O(|V ′p ||V |3) time. However, suppose that a block B(u)
is split (line 8) into B1 (contains u) and B2 (without u).
It is unnecessary to find matches for B2. Thus, one can
verify that SplitMatch has a comparable worst case com-
plexity to |E′p||V 2|, measured with input size. Moreover,
the same auxiliary structure used in algorithm JoinMatch
is adopted here, to ensure that the loop (lines 6-14) runs
in O(|parout||V |2) time for a cyclic query.

6 Experimental Evaluation
In this section we present an experimental study using
both real-life data and synthetic data. Four sets of exper-
iments were conducted, to evaluate: (1) the effectiveness
of PQs, compared with a subgraph isomorphism algo-
rithm SubIso [43] and a simulation based pattern match-
ing algorithm Match [20]; (2) the effectiveness of mini-
mization as an optimization strategy; (3) the efficiency
of RQ evaluation; and (4) the efficiency and scalability
of algorithms JoinMatch and SplitMatch, employing dis-
tance matrix and distance cache as indices.

Experimental setting. We used real-life data to eval-
uate the performance of our methods in the real world
applications, and synthetic data to vary graph charac-
teristics, for an in-depth analysis.
(1) Real-life data. We used two sets of real-life data. (a)
We used YouTube dataset, in which each node denotes a
video with attributes such as uploader id (uid), category
(cat), length (len), comment number (com) and age (the
number of days since uploaded); edges between videos
represent relationships such as friends recommendation
fc (resp. reference fr) from earlier (resp. later) videos to
later (resp. earlier) related ones, while their uploaders
are friends; edge relationships also include strangers rec-
ommendation sc and reference sr defined similarly. The
dataset has 8350 nodes and 30391 edges. (b) We gener-
ated a terrorist organization collaboration network, from
81800 worldwide terrorist attack events in the last 40
years recorded in Global Terrorism Database [1], where
each node represents a terrorist organization (TOs) with
attributes such as name (gn), country, target type (tt),
and attack type (at); and edges bear relationships, e.g.,
international (resp. domestic) collaborations ic (resp. dc),
from organizations to the ones they assisted or collabo-
rated in the same country (resp. different countries). The
network has 818 nodes and 1600 edges.
(2) Query generator. We designed a query generator to
produce meaningful PQs. The generator has five param-
eters: |Vp| denotes the number of pattern nodes, |Ep| is
the number of pattern edges, |pred| denotes the number
of predicates each pattern node carries, and bounds b
and c are used such that each edge is constrained by a
regular expression e≤b1 . . . e≤bk , with 1 ≤ k ≤ c. An RQ is
a special case of a PQ with two nodes and one edge.

Front. Comput. Sci. China
17

Q1 Q2

"Hamas"

"Tanzim"
"MEND"

"Carlos the

 Jackal"

"SSP"

"Lashkar

 -e-Jhangvi"

Q2ResultQ1Result

video 734 video 2887

video 900 video 904

video 1119

video 857video 854

com>20, age>300

cat="Film & Animation"

uid="Davedays"

view>160k

com<300

len>4 min, age>600

cat="Music"

+

<_fr 5

sr
<_ 5

fr

fr fc

<_6
sr fr

at="Armed Assault"

tt="Business"

at="Bombing"

tt="Military"

gn="Hamas"

tt="Private Citizens & Property"

ic dc ic
<_2 + <_2

ic
+

dc
+

dc
+

ic
<_2

A

B

C

D

(a) Real-life result of PQs: Youtube and Terrorist Organization

0

0.2

0.4

0.6

0.8

1

(3,3) (4,4) (5,5) (6,6) (7,7)

F
-m

ea
su

re

JoinMatchM Match

MatchM Match

SubIso Match

(b) Effectiveness comparison

0

1

2

3

4

5

6

7

8

(3,3) (4,4) (5,5) (6,6) (7,7)

T
im

e(
se

co
n
d
)

JoinMatchM

SplitMatchM

MatchM

SubIso

(c) Efficiency comparison

Fig. 9 Exp-1: Effectiveness of PQs

(3) Synthetic data. We implemented a generator to pro-
duce data graphs, controlled by 4 parameters: the num-
ber of nodes |V |, the number of edges |E|, the average
number of attributes of a node, and a set of edge colors
that an edge may carry.

(4) Implementation. We have implemented the follow-
ing, all in Java: (a) the bi-directional search based
method (biBFS) for RQs, with a distance cache employ-
ing hashmap to index frequently asked items; (b) algo-
rithms JoinMatch and SplitMatch with distance matrix as
indices, denoted as JoinMatchM and SplitMatchM, respec-
tively; (c) algorithms JoinMatch and SplitMatch using
distance cache, denoted as JoinMatchC and SplitMatchC,
respectively; (d) SubIso, a subgraph isomorphism algo-
rithm [43]; and (e) Match, a simulation based pattern
matching algorithm developed in [20].

All experiments were run on a machine with an AMD
Athlon 64×2 Dual Core 2.30GHz CPU and 4GB of mem-
ory, and its operating system was Scientific Linux. For
each experiment, 20 patterns were generated and tested.
The average is reported here.

Experimental results. We next present our findings.

Exp-1: Effectiveness of PQs. In the first set of ex-
periments, we evaluated the effectiveness of PQs. In con-
trast to SubIso and Match, we show that PQs can identify

meaningful matches in real-life data. For quantitative
comparison, the F-Measure [46] is adopted, which is de-
fined as follows:
F-Measure = 2 · (recall · precision) / (recall + precision)
recall = #true_matches_found / #true_matches
precision = #true_matches_found / #matches

Here #matches is defined as the number of distinct node
pairs (u, v), where u is a query node and v is a graph
node that matches u. The #true_matches is the number
of meaningful results, i.e., matches satisfying constraints
on nodes and edges.

Figure 9(a) depicts two real-life PQs Q1 and Q2.
Query Q1 is to find the videos A in the category
“Film & Animation”, which have more than 20 comments
and were uploaded at least 300 days ago. Videos A are
related to videos B uploaded by “Davedays” via friends
references (fr) or friends recommendations (fc), which in
turn are related to videos C via constraint sr≤6fr. More-
over, B and C both reference videos D, which are viewed
over 160K times and have less than 300 comments. Sim-
ilarly, query Q2 poses a request on a terrorist network
searching for TOs related with a specified TO “Hamas”
via various relations e.g., ic≤2dc+ic≤2.

Partial results of Q1 and Q2 are drawn in Fig. 9(a).
Interestingly, the result of Q2 reflects some (indirect)
connections from different TOs to the Hamas TO in the

18
Frontiers of Computer Science in China

 0

 10

 20

 30

 40

 50

 60

(4,6) (6,8) (8,12) (10,15) (12,18)

T
im

e
(s

e
c
o

n
d

)

Minimized Queries

Normal Queries

(a) Query minimization

 0

 2

 4

 6

 8

 10

1 2 3 4

T
im

e
(s

e
c
o

n
d

)

Bi-BFS

BFS

DM

(b) RQs over Youtube

Fig. 10 Exp-2: PQs minimization and Exp-3: efficiency of RQ

middle east. Existing approaches e.g., SubIso and Match,
are not expressive enough to specify such queries. For a
fair comparison, we allow different edge colors in a data
graph but restrict the color constrained by a query edge
of 1, to favor SubIso and Match.

Figure 9(b) shows the F-Measure values of different
approaches for various such queries. The pair (|Vp|, |Ep|)
in the x-axis denotes the number of nodes |Vp| and edges
|Ep| in a query. The y-axis represents the F-Measure
values. The number of predicates at each query node is 2
or 3. The result shows the following, (1) PQs consistently
find meaningful matches, as expected; (2) SubIso has low
F-Measure, e.g., SubIso found 33 true matches among 245
when the x-value is (3, 3). This is mainly due to its low
recalls. For the other queries, SubIso cannot find any
match. Its precision is always 1 if some matches can be
identified. (3) The F-Measure of Match is better than
that of SubIso, since its recall is high, i.e., it can identify
all true matches. However, its precision is relatively low,
e.g., among the 374 matches found by Match when the
x-value is (3, 3), only 245 are true matches.

Figure 9(c) reports the elapsed time of all the algo-
rithms, using Terrorism data. The matrix-based meth-
ods were employed, i.e., SplitMatchM, JoinMatchM and
MatchM. It shows that JoinMatchM and SplitMatchM out-
perform MatchM, and are much faster than SubIso.

The results above tell us that PQs are not only more
effective, but are also more efficient than its conventional
counterparts, i.e., SubIso and Match.

Exp-2: The effectiveness of PQ minimization. We
evaluated the effectiveness of the minimization algorithm
minPQs (Section 3), using YouTube data. The queries
were generated by varying |Vp| and |Ep|. The average
number of predicates |pred| is 3. The bound c is between
2 and 4, and b is 5, i.e., each edge is constrained by a
regular expression c≤51 . . . c≤5k , where 2 ≤ k ≤ 4. The
results are reported in Fig. 10(a).

In Fig. 10(a), the x-axis is the same as its counter-

parts in Fig. 9(b), and the y-axis represents the elapsed
time for query evaluation. We only show the results of
using algorithm JoinMatchM, since the others reflect sim-
ilar trend and are thus omitted. The minimization pro-
cess was performed instantly. The results tell us the
following: (1) minPQs can reduce the size of queries by
removing redundant nodes and edges from a query, and
thus speed up the query evaluation; and (2) in general,
the larger the queries are, the better the performance can
be improved. This is because larger queries have a higher
probability to contain redundant nodes and edges. In-
deed, it took 18 seconds to handle queries with 12 nodes
and 18 edges, while after minimization, the running time
was cut by over a half since the minimized queries have
7 nodes and 9 edges in average.

This set of experiments verified that the minimization
algorithm can effectively optimize PQs. In the rest of
experiments, all tested queries were minimized.

Exp-3: Efficiency of RQs. In this set of experiment, we
tested the efficiency of the two algorithms presented in
Section 4 for evaluating reachability queries RQs. Fixing
the bound b at 5 and the cardinality of node predicates
at 3, we varied the number of colors c from 1 to 4 per
edge. More specifically, the tested regular expressions
have the form c1

≤b . . . ci
≤b for i ∈ [1, 4].

Figure 10(b) shows the average elapsed time of eval-
uating RQs on YouTube data. The x-axis represents the
number of distinct colors and y-axis indicates the elapsed
time. The term DM means the method employing dis-
tance matrix. The results tell us the following.

(1) The method based on distance matrix is most effi-
cient, and biBFS is more efficient than BFS, as expected.

(2) Algorithm biBFS scales better than BFS with the
number of colors, since by searching from two directions,
biBFS produces less intermediate nodes than BFS. The
trend of the curves of biBFS and BFS indicates that biBFS
works better for more complex regular expressions.

Front. Comput. Sci. China
19

 0

 10

 20

 30

 40

 50

4 6 8 10 12

T
im

e(
se

co
n

d
)

JoinMatchM

JoinMatchC

SplitMatchM

SplitMatchC

M-Index

(a) Varying |Vp| on YouTube

 0

 10

 20

 30

 40

 50

 60

4 6 8 10 12

T
im

e(
se

co
n

d
)

JoinMatchM

JoinMatchC

SplitMatchM

SplitMatchC

M-Index

(b) Varying |Ep| on YouTube

 0

 20

 40

 60

 80

 100

 120

 140

1 2 3 4 5

T
im

e(
se

co
n

d
)

JoinMatchM

JoinMatchC

SplitMatchM

SplitMatchC

M-Index

(c) Varying |pred| on YouTube

 0

 5

 10

 15

 20

 25

 30

1 3 5 7 9

T
im

e(
se

co
n

d
)

JoinMatchM

JoinMatchC

SplitMatchM

SplitMatchC

M-Index

(d) Varying b on YouTube

Fig. 11 Exp-4: Efficiency of PQs (Youtube)

(3) As will be seen shortly, maintaining distance matrix is
expensive for large graphs. Hence biBFS makes a rational
solution on large graphs, by striking the balance between
time and space.

Exp-4: Efficiency of PQs on YouTube. In this set of
experiments we evaluated the performance of JoinMatch
and SplitMatch over synthetic and real life graphs.

Figures 11(a), 11(b), 11(c) and 11(d) depict the
elapsed time when varying one of the parameters: |Vp|,
|Ep|, |pred| and b, respectively. See Fig. 10(b) for the
tests for varying c. The M -index represents the time
of computing a distance matrix, which is shared by
all patterns and thus is not counted in the algorithms
JoinMatchM and SplitMatchM. The result tells us the fol-
lowing.

(1) Figure 11(a) shows that the matrix-based algo-
rithm JoinMatchM (resp. SplitMatchM) outperforms the
distance-cache based JoinMatchC (resp. SplitMatchC).
This is because JoinMatchM and SplitMatchM use dis-
tance matrix as index, which answers node distance in
constant time, while JoinMatchC and SplitMatchC are
based on distance cache: if the distance of two nodes
is not cached, it needs to be recomputed from scratch.

(2) The join-based methods outperform the split-based
methods. As shown in the figures with various parame-
ters, in most cases JoinMatchM is the fastest, followed by
SplitMatchM; and JoinMatchC outperforms SplitMatchC.
This indicates that the computational cost of the join-
based method is reduced by adopting the reversed topo-
logical order (see Section 5).

(3) The elapsed time is more sensitive to the number
of pattern edges (see Fig. 11(b)) than pattern nodes (see
Fig. 11(a)), since the number of pattern edges dominates
the number of joins or splits to be conducted. More-
over, the elapsed time is sensitive to the number of pred-
icates (see Fig. 11(c)) since predicates impose a strong
constraint on initializing the match set. The more the
predicates, the less graph nodes satisfy them, resulting
in smaller candidate matches and faster evaluation. The
time is sensitive to the bound (see Fig. 11(d)) since the
number of matches gets larger when b is increased.

(4) These results demonstrate that all algorithms have
good scalability and they work well when the numbers
of |Vp|, |Ep| |pred| and b become much larger.

(5) We can see thatM -index can be computed efficiently,
and it may significantly improve the performance, when
the dataset is relatively small.

20
Frontiers of Computer Science in China

 0

 10

 20

 30

 40

 50

 60

1k 2k 3k 4k 5k 6k 7k 8k

T
im

e(
se

co
n
d
)

JoinMatchM
JoinMatchC

SplitMatchM
SplitMatchC

(a) Synthetic G(|V |, 20k)

 0

 10

 20

 30

 40

 50

 60

 70

3k 6k 9k 12k 15k 18k 21k 24k 27k 30k
T

im
e(

se
co

n
d
)

JoinMatchM
JoinMatchC

SplitMatchM
SplitMatchC

(b) Synthetic G(8k, |E|)

 0

 5

 10

 15

 20

 25

 30

 35

 40

4 8 12 16 20 24

T
im

e(
se

co
n
d
)

JoinMatchM
JoinMatchC

SplitMatchM
SplitMatchC

M-Index

(c) Varying |Vp|

 0

 5

 10

 15

 20

 25

 30

 35

 40

5 10 15 20 25

T
im

e(
se

co
n
d
)

JoinMatchM
JoinMatchC

SplitMatchM
SplitMatchC

M-Index

(d) Varying |Ep|

 0

 10

 20

 30

 40

 50

 60

2 3 4 5 6 7

T
im

e(
se

co
n
d
)

JoinMatchM
JoinMatchC

SplitMatchM
SplitMatchC

M-Index

(e) Varying |pred|)

 0

 100

 200

 300

 400

 500

 600

 700

(50,100) (100,200) (150,300) (200,400) (250,500)
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

T
im

e(
se

co
n

d
)

M
at

ch
 N

u
m

b
er

Matches of SplitMatchC
Matches of SubIso

SubIso
SplitMatchC

(f) Synthetic G(|V |, |E|)

Fig. 12 Exp-4: Efficiency of PQs (synthetic graphs)

As a supplement, we verified the proposed algorithms
using synthetic data. We first varied both the number
of graph nodes and edges using synthetic data, in order
to test the scalability. The results are shown in Fig-
ures 12(a) and 12(b), respectively. The five parameters:
|Vp|, |Ep|, c, |pred| and b are 6, 8, 4, 3 and 5, respec-
tively. We find that all algorithms scale well with the
increasing number of graph nodes (Figure 12(a)), and
the number of graph edges (Figure 12(b)). Furthermore,
for synthetic data graphs with 8K nodes and 4 distinct
colors, the distance matrix consumes 512MB memory,
when using an unsigned short integer to store a matrix
cell; for a data graph with 16K nodes and 4 distinct col-
ors, it takes 2GB memory. This shows that a matrix is
too large to be applicable to large graphs, and runtime
techniques should be employed in such cases.

Figures 12(c), 12(d) and 12(e) confirm the previous
observations in their real life counterparts (Figures 11(a),
11(b), 11(c), respectively). The results tell us the fol-
lowing. (1) All algorithms are not very sensitive to the
number of query nodes (Figure 12(c)). (2) All algo-
rithms scale well with the increasing number of query
edges (see Figure 12(d)). (3) All algorithms are sensitive
to the increasing number of predicates over queries (Fig-
ure 12(e)). Note that the results show that it takes longer
time to compute the distance matrix, which hinders its
applicability to larger data graphs.

In addition, we compared the efficiency and scalability
of SubIso and SplitMatchC by using a set of small data
graphs. We generated queries with 8 nodes and 15 edges,

where each node has 3 predicates, and each edge is asso-
ciated with a regular expression in the form of c51c52c53c54.
We then tested SubIso and SplitMatchC over the patterns
by varying the number of data graph nodes and edges.
To favor SubIso, we counted the number of matches as
the number of distinct node pairs (u, x), where u is a
query node, and x is a match of u in the data graph. The
result tells us that while the matches found by SubIso is
far less than those found by SplitMatchC , SubIso spent
around 700 seconds, even for data graph of 200 nodes and
250 edges. In contrast, it took SplitMatchC less than 1
second to identify all the meaningful matches. Moreover,
SubIso is more sensitive to the change of the size of data
graph than SplitMatchC .

Summary. From the experimental results we find the
following. (1) Graph pattern queries (PQs) are able to
identify far more sensible matches in emerging applica-
tion than those found by the conventional approaches.
(2) The minimization algorithm can effectively identify
and remove redundant nodes and edges, and thus can
improve performance for query answering. (3) With dis-
tance matrix as indices, the evaluation of RQs is very
efficient. Moreover, algorithm biBFS works reasonably
well when working on large graphs. (4) PQs can be effi-
ciently evaluated, and their evaluation algorithms scale
well with large graphs and complex patterns.

Front. Comput. Sci. China
21

7 Conclusion

We have proposed extensions of reachability queries
(RQs) and graph pattern queries (PQs), by incorporating
a subclass of regular expressions to capture edge rela-
tionships commonly found in emerging applications. We
have also revised graph pattern matching by introducing
an extension of the classical notion of graph simulation.
Moreover, we have settled fundamental problems (con-
tainment, equivalence, minimization) for these queries,
all in low ptime. In addition, we have shown that the
increased expressive power does not incur higher eval-
uation complexity. Indeed, we have provided two algo-
rithms for evaluating RQs, one in quadratic time, the
same as their traditional counterparts [28]. We have also
developed two cubic-time algorithms for evaluating PQs,
as opposed to the intractability of graph pattern match-
ing via subgraph isomorphism. We have verified experi-
mentally that these queries are able to find more sensible
information than their traditional counterparts, and that
the algorithms are efficient when evaluating RQs and PQs
on large graphs, using real-life data and synthetic data.

Several extensions are targeted for future work. One
topic is to extend RQs and PQs by supporting general
regular expressions. Nevertheless, with this comes in-
creased complexity. Indeed, the containment and min-
imization problems become pspace-complete even for
RQs. Another topic is to identify application domains in
which simulation-based PQs are most effective. A third
topic is to study incremental algorithms for evaluating
RQs and PQs. In practice data graphs are frequently
modified, and it is too costly to re-evaluate PQs in cubic-
time (or RQs in quadratic-time) on large data graphs
every time the graphs are updated. This suggests that
we evaluate the queries once, and incrementally com-
pute query answers in response to changes to the graphs.
It is, however, nontrivial to find incremental algorithms
that guarantee to minimize unnecessary recomputation.
While incremental graph pattern matching has recently
been investigated [20, 22], it poses new challenges when
graph patterns are defined in terms of regular expres-
sions, hence, deserves a full treatment.

Acknowledgments. Fan is supported in part by the
RSE-NSFC Joint Project Scheme and an IBM scalable
data analytics for a smarter planet innovation award.
Fan and Li are also supported in part by the Na-
tional Basic Research Program of China (973 Program)
2012CB316200 and NSFC 61133002. Ma is supported
in part by NGFR 973 grant 2011CB302602 and NSFC
grants 90818028 and 60903149, and the Young Faculty
Program of MSRA.

References

1. National Consortium for the Study of Terrorism and Re-
sponses to Terrorism (START).
http://www.start.umd.edu/gtd.

2. S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

3. S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L.
Wiener. The lorel query language for semistructured
data. Int. J. on Digital Libraries, 1(1):68–88, 1997.

4. R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient
management of transitive relationships in large data and
knowledge bases. In SIGMOD, 1989.

5. S. Amer-Yahia, M. Benedikt, and P. Bohannon. Chal-
lenges in searching online communities. IEEE Data Eng.
Bull., 30(2):23–31, 2007.

6. J. Bang-Jensen and G. Z. Gutin. Digraphs: Theory,
Algorithms and Applications. Springer, 2008.

7. P. Barceló, C. A. Hurtado, L. Libkin, and P. T.
Wood. Expressive languages for path queries over graph-
structured data. In PODS, 2010.

8. N. Bruno, N. Koudas, and D. Srivastava. Holistic twig
joins: optimal XML pattern matching. In SIGMOD,
2002.

9. M. J. Brzozowski, T. Hogg, and G. Szabó. Friends and
foes: ideological social networking. In CHI, 2008.

10. P. Buneman, M. F. Fernandez, and D. Suciu. Unql:
A query language and algebra for semistructured data
based on structural recursion. VLDB J., 9(1):76–110,
2000.

11. D. Bustan and O. Grumberg. Simulation-based mini-
mization. TOCL, 4(2):181–206, 2003.

12. E. P. Chan and H. Lim. Optimization and evaluation of
shortest path queries. VLDB J., 16(3):343 – 369, 2007.

13. D. Chen and C. Y. Chan. Minimization of tree pattern
queries with constraints. In SIGMOD, 2008.

14. L. Chen, A. Gupta, and M. E. Kurul. Stack-based algo-
rithms for pattern matching on dags. In VLDB, 2005.

15. Z. Chen, H. T. Shen, X. Zhou, and J. X. Yu. Monitoring
path nearest neighbor in road networks. In SIGMOD,
2009.

16. J. Cheng, J. X. Yu, B. Ding, P. S. Yu, and H. Wang.
Fast graph pattern matching. In ICDE, 2008.

17. E. Cohen, E. Halperin, H. Kaplan, and U. Zwick. Reach-
ability and distance queries via 2-hop labels. SICOMP,
32(5):1338–1355, 2003.

18. W. Fan and P. Bohannon. Information preserving XML
schema embedding. TODS, 33(1), 2008.

19. W. Fan, J. Li, S. Ma, N. Tang, and Y. Wu. Adding regu-
lar expressions to graph reachability and pattern queries.
In ICDE, 2011.

20. W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, and Y. Wu. Graph
pattern matching: From intractable to polynomial time.
In PVLDB, 2010.

21. W. Fan, J. Li, S. Ma, H. Wang, and Y. Wu. Graph ho-
momorphism revisited for graph matching. In PVLDB,
2010.

22. W. Fan, J. Li, Z. Tan, X. Wang, and Y. Wu. Incremental
graph pattern matching. In SIGMOD, 2011.

23. D. Florescu, A. Y. Levy, and D. Suciu. Query contain-
ment for conjunctive queries with regular expressions. In
PODS, 1998.

24. B. Gallagher. Matching structure and semantics: A sur-

22
Frontiers of Computer Science in China

vey on graph-based pattern matching. AAAI FS., 2006.
25. H. He and A. K. Singh. Graphs-at-a-time: query lan-

guage and access methods for graph databases. In SIG-
MOD, 2009.

26. M. R. Henzinger, T. Henzinger, and P. Kopke. Comput-
ing simulations on finite and infinite graphs. In FOCS,
1995.

27. T. Jiang and B. Ravikumar. Minimal NFA Problems are
Hard. SICOMP, 22(6):1117–1141, 1993.

28. R. Jin, H. Hong, H. Wang, N. Ruan, and Y. Xiang. Com-
puting label-constraint reachability in graph databases.
In SIGMOD, 2010.

29. R. Jin, Y. Xiang, N. Ruan, and D. Fuhry. 3-hop: a high-
compression indexing scheme for reachability query. In
SIGMOD, 2009.

30. R. Jin, Y. Xiang, N. Ruan, and H. Wang. Efficiently
answering reachability queries on very large directed
graphs. In SIGMOD, 2008.

31. R. Kauhik, P. Shenoy, P. Bohannon, and E. Gudes.
Exploiting local similarity for indexing paths in graph-
structured data. In ICDE, 2002.

32. F. Mandreoli, R. Martoglia, and W. Penzo. Flexible
query answering on graph-modeled data. In EDBT,
2000.

33. M. McPherson, L. Smith-Lovin, and J. M. Cook. Birds of
a feather: Homophily in social networks. Annual Review
of Sociology, 27:415–444, 2001.

34. T. Milo and D. Suciu. Index structures for path expres-
sions. In ICDT, 1999.

35. F. Neven and T. Schwentick. XPath containment in the
presence of disjunction, DTDs, and variables. In ICDT,

2003.
36. C. H. Papadimitriou. Computational Complexity. Addi-

son -Wesley, 1994.
37. F. Ranzato and F. Tapparo. A new efficient simulation

equivalence algorithm. In LICS, 2007.
38. R. Ronen and O. Shmueli. SoQL: A language for query-

ing and creating data in social networks. In ICDE, 2009.
39. D. Shasha, J. T. L. Wang, and R. Giugno. Algorithmics

and applications of tree and graph searching. In PODS,
2002.

40. SPARQL. http://www.w3.org/TR/rdf-sparql-query/.
41. R. E. Tarjan. Depth-first search and linear graph algo-

rithms. SICOMP, 1(2):146–160, 1972.
42. H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-Rad.

Fast best-effort pattern matching in large attributed
graphs. In KDD, 2007.

43. J. R. Ullmann. An algorithm for subgraph isomorphism.
JACM, 23(1):31–42, 1976.

44. H. Wang, H. He, J. Yang, P. S. Yu, and J. X. Yu. Dual
labeling: Answering graph reachability queries in con-
stant time. In ICDE, 2006.

45. F. Wei. TEDI: Efficient shortest path query answering
on graphs. In SIGMOD, 2010.

46. Wikipedia. F-measure. http://en.wikipedia.org/wiki/F-
measure.

47. P. T. Wood. Containment for XPath fragments under
DTD constraints. In ICDT, 2003.

48. L. Zou, L. Chen, and M. T. Özsu. Distance-join: Pattern
match query in a large graph database. In PVLDB, 2009.

