
A

Conflict Resolution with Data Currency and Consistency

Wenfei Fan, University of Edinburgh, UK, and RCBD and SKLSDE Lab, Beihang University, China
Floris Geerts, University of Antwerp, Belgium
Nan Tang, Qatar Computing Research Institute, Qatar
Wenyuan Yu, Facebook, Inc., USA

This paper introduces a new approach for conflict resolution: given a set of tuples pertaining to the same
entity, it is to identify a single tuple in which each attribute has the latest and consistent value in the set. This
problem is important in data integration, data cleaning and query answering. It is, however, challenging
since in practice, reliable timestamps are often absent, among other things. We propose a model for conflict
resolution, by specifying data currency in terms of partial currency orders and currency constraints, and by
enforcing data consistency with constant conditional functional dependencies. We show that identifying data
currency orders helps us repair inconsistent data, and vice versa. We investigate a number of fundamental
problems associated with conflict resolution, and establish their complexity. In addition, we introduce a
framework and develop algorithms for conflict resolution, by integrating data currency and consistency
inferences into a single process, and by interacting with users. We experimentally verify the accuracy and
efficiency of our methods using real-life and synthetic data.

Categories and Subject Descriptors: H.2 [Database Management]: General—integrity

General Terms: Theory, Algorithms, Experimentation

Additional Key Words and Phrases: Conditional functional dependency, Currency constraints, Data cleaning

1. INTRODUCTION
Conflict resolution is the process that, given a set It of tuples pertaining to the same
entity, fuses the tuples into a single tuple and resolves conflicts among the tuples of
It [Dong and Naumann 2009]. Traditional work resolves conflicts typically by taking,
e.g., the max,min, avg, any of attribute values (see [Bleiholder and Naumann 2008] for
a recent survey on conflict resolution).

We study a new approach for conflict resolution, by highlighting both data currency
and data consistency. Given It, we want to identify a single tuple in which each at-
tribute has consistent and the most current value taken from It, referred to as the true
values of the entity relative to It. The need for studying this problem is evident in data
integration, where conflicts often emerge from values that refer to the same entity and
come from different sources. It is also common to find multiple values of the same en-
tity residing in a database. While these values were once correct, i.e., they were the true
values of the entity at some time, some of them may have become stale and thus incon-
sistent. Indeed, it is estimated that in a customer database, about 50% of the records
may become obsolete within two years [Eckerson 2002]. Even in the same tuple t, some
attribute values are up-to-date, while the rest may not be, due to data fusion and up-
dates. With these comes the need for resolving conflicts for, e.g., data fusion [Bleiholder
and Naumann 2008; Dong and Naumann 2009], data cleaning [Arenas et al. 1999] and
query answering with current values [Fan et al. 2012].

No matter how important, the problem is rather challenging. Indeed, it is already
highly nontrivial to find consistent values for an entity [Arenas et al. 1999; Cong
et al. 2007]. Moreover, it is hard to identify the most current entity values [Fan et al.
2012] since in the real world, reliable timestamps are often absent [Zhang et al. 2010;
Goldring 1995]. Add to this the complication that when resolving conflicts one has to
find the entity values that are both consistent and most current.

ACM Journal of Data and Information Quality, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 W. Fan, F. Geerts, N. Tang & W. Yu

Fig. 1. V-J Day

name status job kids city AC zip county

E1 r1: Edith Shain working nurse 0 NY 212 10036 Manhattan
r2: Edith Shain retired n/a 3 SFC 415 94924 Dogtown
r3: Edith Shain deceased n/a null LA 213 90058 Vermont

E2 r4: George Mendonça working sailor 0 Newport 401 02840 Rhode Island
r5: George Mendonça retired veteran 2 NY 212 12404 Accord
r6: George Mendonça unemployed n/a 2 Chicago 312 60653 Bronzeville

Fig. 2. Instances E1 for entity Edith and E2 for George

Currency constraints: ϕ1: ∀t1, t2 (t1[status] = “working” ∧ t2[status] = “retired”→ t1 ≺status t2)
ϕ2: ∀t1, t2 (t1[status] = “retired” ∧ t2[status] = “deceased”→ t1 ≺status t2)
ϕ3: ∀t1, t2 (t1[job] = “sailor” ∧ t2[job] = “veteran”→ t1 ≺job t2)
ϕ4: ∀t1, t2 (t1[kids] < t2[kids]→ t1 ≺kids t2)
ϕ5: ∀t1, t2 (t1 ≺status t2 → t1 ≺job t2)
ϕ6: ∀t1, t2 (t1 ≺status t2 → t1 ≺AC t2)
ϕ7: ∀t1, t2 (t1 ≺status t2 → t1 ≺zip t2)
ϕ8: ∀t1, t2 (t1 ≺city t2 ∧ t1 ≺zip t2 → t1 ≺county t2)

Constant CFDs: ψ1: ∀t (t[AC] = 213→ t[city] = LA)
ψ2: ∀t (t[AC] = 212→ t[city] = NY)

Fig. 3. Currency constraints and constant CFDs

Example 1: The photo in Fig. 1 is known as “V-J Day in Times Square”. The nurse
and sailor in the photo have been identified as Edith Shain and George Mendonça,
respectively, and their information is collected in sets E1 and E2 of tuples, respectively,
shown in Fig. 2.

We want to find the true values of these entities, i.e., a tuple t1 for Edith (resp. a tuple
t2 for George) such that the tuple has the most current and consistent attribute values
for her (resp. his) status, job, the number of kids, city, AC (area code), zip and county in
E1 (resp. E2). However, the values in E1 (E2) have conflicts, and worse still, they do
not carry timestamps. They do not tell us, for instance, whether Edith still lives in NY,
or even whether she is still alive. Moreover, as commonly found in practice, the true
values of the attributes may be scattered across different tuples and hence, we cannot
find them by simply identifying a couple of tuples that are most current or consistent,
i.e., conflict resolution often cannot be conducted at the tuple level. 2

The situation is bad, but not hopeless. We can often deduce certain currency or-
ders from the semantics of the data. In addition, dependencies such as conditional
functional dependencies (CFDs) [Fan et al. 2008] have proven useful in improving the
consistency of the data. Better still, data currency and consistency interact with each
other. When they are taken together, we can often infer some true values from incon-
sistent tuples, even in the absence of timestamps, as illustrated below.

ACM Journal of Data and Information Quality, Vol. V, No. N, Article A, Publication date: January YYYY.

Conflict Resolution with Data Currency and Consistency A:3

Example 2: From the semantics of the data, we can deduce the currency constraints
and CFDs shown in Fig. 3.

(1) Currency constraints. We know that for each person, status only changes from work-
ing to retired and from retired to deceased, but not from deceased to working or retired.
These can be expressed as ϕ1 and ϕ2 given in Fig. 3, referred to as currency constraints.
Here t1 ≺status t2 denotes a partial currency order defined on the attribute status, in-
dicating that t2 is more current than t1 in attribute status. Similarly, we know that job
can only change from sailor to veteran but not the other way around. We can express
this as currency constraint ϕ3, shown in Fig. 3. Moreover, the number of kids typically
increases monotonically. We can express this as ϕ4, assuring that t2 is more current
than t1 in attribute kids if t1[kids] < t2[kids].

In addition, we know that for each person, if tuple t2 is more current than t1 in
attribute status, then t2 is also more current than t1 in job, AC and zip. Furthermore, if
t2 is more current than t1 in attributes city and zip, it also has a more current county
than t1. These can be expressed as currency constraints ϕ5–ϕ8.

(2) Constant CFDs. In the US, if the AC is 213 (resp. 212), then the city must be LA
(resp. NY). These are expressed as conditional functional dependencies ψ1 and ψ2

shown in Fig. 3.

We can apply these constraints to the set E1 of tuples given in Fig. 2, to improve the
currency and consistency of the data. By interleaving inferences of data currency and
data consistency, we can actually identify the true values of entity Edith, as follows:

(a) from the currency constraints ϕ1 and ϕ2, we can conclude that her latest status is
deceased;

(b) similarly, by ϕ4, we find that her true kids value is 3 (assuming null < k for any
number k);

(c) from (a) above and ϕ5–ϕ7, we know that her latest job, AC and zip are n/a, 213 and
90058, respectively;

(d) after currency inferences (a) and (c), we can apply the CFD ψ1 and find her latest
city as LA; and

(e) after the consistency inference (d), from (c) and (d) we get her latest county as Ver-
mont, by applying the currency constraint ϕ8.
Now we have identified a single tuple

t1 = (Edith Shain, deceased, n/a, 3, LA, 213, 90085, Vermont)
as the true values of Edith Shain relative to the set E1 of tuples (the address is for her
cemetery). Observe that these true values are taken from different tuples in E1, e.g.,
kids = 3 from r2 and AC = 213 from r3. 2

This example suggests the following. (1) Data currency and consistency should be in-
terleaved when resolving conflicts. Indeed, not only deducing currency orders helps us
improve the consistency (e.g., from steps (a), (c) to (d)), but data consistency inferences
also help us identify the most current values (e.g., step (e) is doable only after (d)). (2)
Both data currency and data consistency can be specified with constraints, and hence,
can be processed in a uniform logical framework.

While the need for deducing the consistent and most current values has been advo-
cated for conflict resolution [Dong and Naumann 2009; Motro and Anokhin 2006], prior
work typically assumes the availability of timestamps. Previous work on data quality
focuses on either data consistency (e.g., [Arenas et al. 1999; Fan et al. 2008; Cong et al.
2007; Yakout et al. 2010]) or data currency (e.g., [Fan et al. 2012]) taken separately.

ACM Journal of Data and Information Quality, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 W. Fan, F. Geerts, N. Tang & W. Yu

However, no models or algorithms are yet in place to combine data consistency and
currency for conflict resolution.
Contributions. We study conflict resolution by inferring both data currency and data
consistency.

(1) We propose a model for conflict resolution (Section 2). We specify data currency in
terms of (a) partial currency orders denoting available (yet possibly incomplete) tem-
poral information on the data, and (b) simple currency constraints, to express currency
relationships derived from the semantics of the data. Data consistency is specified in
terms of constant CFDs [Fan et al. 2008] on the latest values of the data. Given such a
specification Se on a set E of tuples pertaining to the same entity e, we aim to derive
the true values of e from Se.

(2) We introduce a framework for conflict resolution (Section 3). One may find some
true values of an entity from its specification, but not all, as illustrated below.

Example 3: Consider the set E2 of tuples for entity George Mendonça (Fig. 2). Along
the same lines as Example 2, we find that its true (name, kids) values are (George
Mendonça, 2). However, we do not have sufficient information to infer the true values
of the other attributes of this entity. 2

In light of this, our framework automatically derives as many true values as possible
from a given specification Se of an entity e, identifies attributes for which the true
values of e are not derivable from Se, and interacts with users to solicit additional
input for those attributes, so that all the true values of all the attributes of e can be
derived from Se and users’ input.

(3) We study problems fundamental to conflict resolution (Section 4). Given a speci-
fication Se, we determine whether partial currency orders, currency constraints and
CFDs in Se have conflicts among themselves? Whether some other currency orders are
implied by Se? Whether true values of an entity can be derived from Se? If not, what
additional minimum currency information has to be provided so that the true values
are derivable? We establish their complexity bounds, ranging from NP-complete and
coNP-complete to Σp

2-complete. These results reveal the complexity inherent to conflict
resolution.

(4) We develop several practical algorithms (Section 5). We propose methods for finding
(a) whether a specification Se has conflicts, (b) what true values can be derived from Se,
and (c) a minimum set of attributes that require users’ input to find their true values.
All these problems are intractable; in particular, the last problem is Σp

2-complete. Nev-
ertheless, we provide efficient heuristic algorithms, by integrating inferences of data
consistency and currency into a single process.

(5) We evaluate the accuracy and efficiency of our method using real-life and syn-
thetic data (Section 6). We find that unifying currency and consistency substantially
improves the accuracy of traditional methods, by 201% (F-measure), even with only a
small number of constraints. It is also more effective than taking consistency and cur-
rency separately. Furthermore, our algorithms are efficient, and scale well with the
number of tuples pertaining to an entity and with the number of constraints; for ex-
ample, it takes an average of 7 seconds to resolve conflicts in sets of 8k-10k tuples
representing an entity, with 1983 constraints.

ACM Journal of Data and Information Quality, Vol. V, No. N, Article A, Publication date: January YYYY.

Conflict Resolution with Data Currency and Consistency A:5

We contend that this work provides fundamental results for conflict resolution, and
propose a practical solution via inferences of data currency and data consistency in the
absence of timestamps.
Related work. This work extends [Fan et al. 2013] by including (1) a comprehensive
analysis of the fundamental problems in connection with conflict resolution in terms
of currency constraints and constant CFDs (Section 4); and (2) a detailed discussion
of algorithms and procedures needed for finding the most current values (Section 5).
None of the proofs of (1) was presented in [Fan et al. 2013]. These proofs are interesting
in their own right. Most procedures of (2) were not given in [Fan et al. 2013].

Conflict resolution has been studied for decades, started from [Dayal 1983]. It aims
to combine data from different sources into a single representation (see [Bleiholder
and Naumann 2008; Dong and Naumann 2009] for surveys). In that context, inconsis-
tencies are typically resolved by selecting the max,min, avg, any value [Bleiholder and
Naumann 2008]. While the need for data currency was also observed there (e.g., [Dong
and Naumann 2009; Motro and Anokhin 2006]), previous work identifies current val-
ues only by using timestamps. This work differs from the traditional work in the fol-
lowing. (1) We revise the conflict resolution problem to identify values of entities that
are both consistent and most current. (2) We do not assume the availability of times-
tamps, which are often missing in practice [Zhang et al. 2010; Goldring 1995]. (3) We
resolve conflicts by using currency constraints and constant CFDs [Arenas et al. 1999;
Fan et al. 2008; Cong et al. 2007], instead of picking max,min, avg or any value. (4) We
employ automated reasoning to identify true values by unifying the inferences of data
currency and consistency.

There has been work on truth discovery from data sources [Dong et al. 2009; Galland
et al. 2010; Yin et al. 2008]. Their approaches include (1) vote counting and prob-
abilistic computation based on the trustworthiness of data sources [Galland et al.
2010; Yin et al. 2008]; (2) source dependencies to find copy relationships and reli-
able sources [Dong et al. 2009]; and (3) employing lineage information and probabili-
ties [Widom 2005]. In contrast, we assume no information about the accuracy of data
sources, but derive true values based on data currency and consistency. In addition,
we adopt a logical approach via automated reasoning about constraints, as opposed to
probabilistic computation. This work is complementary to the previous work and can
be combined with the prior approaches.

This work extends [Fan et al. 2012; Fan et al. 2008]. A data currency model was pre-
sented in [Fan et al. 2012] with partial currency orders and denial constraints [Arenas
et al. 1999]. CFDs were studied for specifying data consistency [Fan et al. 2008]. This
work differs from [Fan et al. 2012; Fan et al. 2008] in the following. (1) We propose
a conflict resolution model that combines data currency and consistency. In contrast,
[Fan et al. 2012] only studies data currency, while [Fan et al. 2008] only considers data
consistency. (2) We interleave inferences of data currency and consistency, which is far
more intriguing than handling currency and consistency separately, and requires new
techniques to capture the interaction between the two. (3) We use currency constraints,
which are simpler than denial constraints, to strike a balance between the complexity
of inferring true values and the expressivity needed for specifying currency (Section 4).
(4) No practical algorithms were given in [Fan et al. 2012] for deriving current values.

Previous work on data consistency [Arenas et al. 1999; Fan et al. 2008; Cong et al.
2007; Yakout et al. 2010; Greco et al. 2003; Dallachiesa et al. 2013] has been focusing
on consistent query answering and data repairing [Bertossi 2011], topics different from
conflict resolution (see [Fan and Geerts 2012] for a recent survey on data consistency).
The study of preferred repairs [Greco et al. 2003] also advocates partial orders. It dif-

ACM Journal of Data and Information Quality, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 W. Fan, F. Geerts, N. Tang & W. Yu

fers from the currency orders we study here in that they use PTIME functions to rank
different repairs over the entire database, whereas we derive the currency orders by
automated reasoning about both available partial temporal information and currency
constraints. Preferred repairs are implemented by [Cong et al. 2007] via a cost metric,
and by [Yakout et al. 2010] based on a decision theory, which can be incorporated into
our framework.

There has been a large body of work on temporal databases (see [Chomicki and
Toman 2005] for a survey). In contrast to that line of work, we do not assume the
availability of timestamps. It has also recently been shown that temporal information
helps record linkage identify records that refer to the same entity [Li et al. 2011]. Here
we show that data currency helps conflict resolution as well, a different process that
takes place after record linkage has identified tuples pertaining to the same entity.
While [Li et al. 2011] is based on timestamps, we do not assume it here.
Organization. The rest of the paper is organized as follows. We propose a model
for specifying conflicts in Section 2, based on data currency and consistency, and
introduce a framework for resolving conflicts in Section 3. Problems fundamental to
conflict resolution are studied in Section 4, and practical algorithms underlying the
conflict resolution framework are developed in Section 5. An experimental study is
reported in Section 6, followed by directions for future work in Section 7.

2. A CONFLICT RESOLUTION MODEL
In this section we show how to capture conflicts in terms of data currency and data
consistency. We start with data currency (Section 2.1) and consistency (Section 2.2)
specifications. We then present our model for characterizing conflicts commonly found
in the real world by means of the specifications (Section 2.3).

2.1. Data Currency
We specify the currency of data by means of (a) partial currency orders, and (b) cur-
rency constraints.
Data with partial currency orders. Consider a relation R = (A1, . . . , An), where
each attribute Ai has a domain dom(Ai). In this work we focus on entity instances
Ie of R, which are sets of tuples of R all pertaining to the same real-world entity e,
and are typically much smaller than a database instance. Such entity instances can be
identified by e.g., record linkage techniques (see [Elmagarmid et al. 2007] for a survey).
For an attribute Ai ∈ R and an entity instance Ie of R, we denote by adom(Ie.Ai) the
set of Ai-attribute values that occur in Ie, referred to as the active domain of Ai in Ie.

We have seen two entity instances given in Fig. 2: E1 = {r1, r2, r3} for entity “Edith”,
and E2 = {r4, r5, r6} for “George”. Here adom(E1.city) = {NY, SFC, LA}; similarly for
other attributes.

A temporal instance It of Ie is given as (Ie,4A1 , . . . ,4An), where each 4Ai is a partial
order on Ie, referred to as the currency order for attributeAi for the entity e represented
by Ie. For all t1, t2 ∈ Ie, t1 4Ai

t2 if and only if (iff) either t1 and t2 share the same Ai-
attribute value (i.e., t1[Ai] = t2[Ai]), or t2[Ai] is more current than t1[Ai] (denoted by
t1 ≺Ai

t2).
Intuitively, currency orders represent available temporal information about the

data. Observe that 4Ai
is a partial order, possibly empty. For example, for E1 above,

we only know that r3 4kids r1 and r3 4kids r2 since r3[kids] is null, which are in the cur-
rency order 4kids, while the currency orders for other attributes are empty, excluding
the case when tuples carry the same attribute value. Similarly for E2. In particular,

ACM Journal of Data and Information Quality, Vol. V, No. N, Article A, Publication date: January YYYY.

Conflict Resolution with Data Currency and Consistency A:7

t1 4Ai t2 if t1[Ai] is null, i.e., an attribute with value missing is ranked the lowest in
the currency order.
Current instances. Currency orders are often incomplete. Hence we consider possible
completions of currency orders. More specifically, a completion Ict of It is a temporal
instance Ict = (Ie,4c

A1
, . . . ,4c

An
), such that for each i ∈ [1, n],

(1) 4Ai ⊆ 4c
Ai

, and
(2) for all tuples t1, t2 ∈ Ie, either t14c

Ai
t2 or t24c

Ai
t1.

That is, 4c
Ai

induces a total order on the Ai attribute values in the tuples of Ie. Intu-
itively, Ict totally sorts the attribute values in Ie such that the most current value of
each attribute is the last in the order.

We define the most current Ai-attribute value of Ict to be t[Ai] that comes last in the
total order 4c

Ai
. The current tuple of Ict , denoted by LST(Ict) (i.e., last), is defined to be

the tuple tl such that for each attribute Ai, tl[Ai] is the most current Ai-value of Ict ,
i.e., tl contains the most current values from Ict .
Currency constraints. In addition to partial currency orders, we can derive addi-
tional currency information from the semantics of the data modeled as currency con-
straints. A currency constraint ϕ is of the form

∀t1, t2 (ω → t1 ≺Ar t2),

where ω is a conjunction of predicates of the form:
(1) t1≺Al

t2, i.e., t2 is more current than t1 in attribute Al;
(2) t1[Al] op t2[Al], where op is =, 6=, >,<,≤ or ≥; and
(3) ti[Al] op c for i ∈ {1, 2}, where c is a constant.

In contrast to denial constraints adopted in the model of [Fan et al. 2012] that was
define on an unbounded number of tuples, currency constraints are defined on two
tuples, like functional dependencies. Such constraints suffice to specify currency infor-
mation commonly found in practice (see, e.g., Example 2).

Currency constraints are interpreted over completions Ict of It. We say that Ict satis-
fies ϕ, denoted by Ict |= ϕ, if for any two tuples t1, t2 in Ie, if these tuples and related
order information in Ict satisfy the predicates in ω, following the standard semantics of
first-order logic, then t1 ≺c

Ar
t2. We say that Ict satisfies a set Σ of currency constraints,

denoted by Ict |= Σ, if Ict |= ϕ for all ϕ ∈ Σ.
Example 4: Recall entity instances E1 and E2 from Fig. 2. Currency constraints on E1

and E2 include ϕ1–ϕ8 as specified in Fig. 3 and interpreted in Example 2.
It is readily verified that for any completion Ec

1 of E1, if it satisfies these constraints,
it yields LST(Ec

1) of the form (Edith, deceased, n/a, 3, xcity, 213, 90058, xcounty) for Edith,
in which the most current values for attributes name, status, job, kids, AC and zip are
deduced from the constraints and remain unchanged, while xcity and xcounty are values
determined by the total currency order given in Ec

1. As remarked earlier, the values of
the current tuple come from different tuples in E1, e.g., r2 and r3.

Similarly, for any completion of E2, its current tuple has the form (George, xstatus,
xjob, 2, xcity, xAC, xzip, xcounty), if they satisfy all the constraints. From these we can see
that currency constraints help us find the most current values of some attributes, but
not necessarily all attributes. 2

2.2. Data Consistency
To specify the consistency of data in our conflict model, we use a simple class of con-
ditional functional dependencies (CFDs) [Fan et al. 2008], known as constant CFDs. A
constant CFD [Fan et al. 2008] ψ is of the form

ACM Journal of Data and Information Quality, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 W. Fan, F. Geerts, N. Tang & W. Yu

∀t (ν → t[Ar] = cr),

where cr is a constant from dom(Ar) and ν is a conjunction of predicates of the form
t[Al] = cl, for cl ∈ dom(Al). For example, ψ1 and ψ2 in Fig. 3 are constant CFDs, as
interpreted in Example 2.

Such CFDs are defined on the current tuple of a completion. Consider a completion Ict
of It, for which the current tuple is tl = LST(Ict) . We say that the completion Ict satisfies
a ψ, denoted by Ict � ψ, if whenever tl satisfies the predicate ν, following the standard
semantics of first-order logic, then tl[Ar] = cr.

Intuitively, this assures that if tl agrees with the constants specified in ν and if these
are most current, then tl[Ar] should take value cr, and tl[Ar] is the most current value
in attribute Ar.

We say that Ict satisfies a set Γ of constant CFDs, denoted by Ict � Γ, iff Ict � ψ for each
ψ ∈ Γ.

Observe that a constant CFD is defined on a single tuple LST(Ict). In light of this, we
do not need general CFDs of [Fan et al. 2008], which are typically defined on two tuples.
Example 5: Recall the current tuples for E1 described in Example 4. Then all com-
pletions of E1 that satisfy ψ1 in Fig. 3 have the form (Edith, deceased, n/a, 3, LA, 213,
90058, Vermont), in which xcity is instantiated as LA to be ψ1, and as a result, xcounty
then becomes Vermont by the currency constraint ϕ8. 2

2.3. Conflict Resolution
We are ready to specify entities.
Specifications. A specification Se = (It,Σ,Γ) of an entity consists of

(1) a temporal instance It = (Ie,4A1
, . . . ,4An

);
(2) a set Σ of currency constraints; and
(3) a set Γ of constant CFDs.
A completion Ict = (Ie,4c

A1
, . . . ,4c

An
) of It is called a valid completion of specification

Se if Ict satisfies both Σ and Γ.
We say that Se is valid if there exists a valid completion Ict of Se. For instance, the

specification of E1 (or E2) with the constraints given in Fig. 3 is valid.
True values. There may be many valid completions Ict , each leading to a possibly
different current tuple LST(Ict). When two current tuples differ in some attribute, there
is a conflict. We aim to resolve such conflicts. If all such current tuples agree on all
attributes, then the specification is conflict-free, and a unique current tuple exists for
the entity e specified by Se. In this case, we say that this tuple is the true value of e.

The true value of Se, denoted by T(Se), is the single tuple tc such that for all valid
completions Ic of Se, tc = LST(Se), if it exists. For each attribute Ai of R, we call tc[Ai]
the true value of Ai in specification Se.
The conflict resolution problem. Consider a specification Se = (It,Σ,Γ) of an entity
e, where It = (Ie,4A1

, . . . ,4An
). Given Se, conflict resolution is to find the minimum

amount of additional currency information such that the true value exists.
The additional currency information is specified in terms of a partial temporal order

Ot = (I,4′A1
, . . . ,4′An

). We use Se ⊕ Ot to denote the extension S′e = (I ′t,Σ,Γ) of Se by
enriching It with Ot, where I ′t = (Ie ∪ I,4A1

∪4′A1
, . . . ,4An

∪4′An
). In the sequel we

only consider partial temporal orders Ot such that 4Ai
∪4′Ai

is a partial order for all
i ∈ [1, n].

ACM Journal of Data and Information Quality, Vol. V, No. N, Article A, Publication date: January YYYY.

Conflict Resolution with Data Currency and Consistency A:9

Ie an entity instance of relation schema R
It a temporal instance of Ie (partial currency orders)
Ict a completion of partial currency orders in It
Se (It, currency constraints Σ, constant CFDs Γ)

LST(Ict) the current tuple of a completion Ict
Ot a partial temporal order

T(Se) the true values of the entity specified by Se

Fig. 4. A summary of notations

We use |Ot| to denote Σi∈[1,n]|4′Ai
|, i.e., the sum of the sizes of all the partial orders

in Ot (note that each 4′Ai
is a binary relation, and |4′Ai

| is its cardinality).
Given a valid specification Se = (It,Σ,Γ) of an entity e, the conflict resolution prob-

lem is to find a partial temporal order Ot such that
◦ the true value T(Se ⊕Ot) of e exists and
◦ |Ot| is minimum.
Example 6: Recall from Example 4 the current tuples for George. Except for name
and kids, we do not have a unique current value for the other attributes. Nonetheless,
if a partial temporal order Ot with, e.g., r6 ≺status r5 is provided by the users (i.e.,
status changes from unemployed to retired), then the true value of George in E2 can
be derived as (George, retired, veteran, 2, NY, 212, 12404, Accord) from the currency
constraints and the constant CFDs of Fig. 3. 2

We summarize the notations in Fig. 4.

3. A CONFLICT RESOLUTION FRAMEWORK
We propose a framework for conflict resolution. As depicted in Fig. 5, given a specifi-
cation Se = (It,Σ,Γ) of an entity e, the framework is to find the true value T(Se) of e
by reasoning about data currency and consistency, and by interacting with the users
to solicit additional data currency information.

The framework provides the users with suggestions. A suggestion is a minimum set
A of attributes of e such that if the true values of these attributes are provided by the
users, T(Se) can be automatically deduced from the users’ input, Σ, Γ and It. The true
values for A are represented as a temporal order Ot.

More specifically, the framework deduces T(Se) as follows.

(1) Validity checking. It first inspects whether Se⊕Ot is valid, via automated reasoning,
where Ot is a partial temporal order provided by the users, initially empty (see step (4)
below for details about Ot). If valid, it follows the “Yes” branch. Otherwise the users
need to revise Ot by following the “No” branch.

(2) True value deducing. After Se ⊕ Ot is validated, it derives as many true values for
the attributes of e as possible, via automated reasoning.

(3) Finding the true value. If T(Se⊕Ot) exists, it computes and returns it following the
“Yes” branch. Otherwise, it follows the “No” branch and goes to step (4).

(4) Generating suggestions. It computes a suggestion A along with its candidate values
taken from the active domain of Se, such that if the users pick and validate the true
values for A, then T(Se ⊕ Ot) is warranted to be found. The users are expected to
provide V, the true values of some attributes in A, represented as a partial temporal

ACM Journal of Data and Information Quality, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 W. Fan, F. Geerts, N. Tang & W. Yu

A temporal instance It

Currency constraints �

CFDs �

Se

Calculate Ot from V

Is valid Se � Ot?

Deduce T(Se � Ot)

T(Se � Ot) exists?

Generate a suggestion

Return T(Se � Ot)
No

Yes

Yes

No

some true value V

Fig. 5. Framework overview

order Ot. Given Ot, Se ⊕Ot is constructed and the process goes back to step (1).
The process proceeds until T(Se ⊕ Ot) is found, or when the users opt to settle with

true values for a subset of attributes of e. That is, if users do not have sufficient knowl-
edge about the entity, they may let the system derive true values for as many attributes
as possible, and revert to the traditional methods to pick the max,min, avg, any values
for the rest of the attributes.

By leveraging user input, the proposed conflict resolution framework can thus be
applied to relations consisting of arbitrarily many attributes and specifications that
do not necessarily allow to infer the current values of all attributes. Indeed, suppose
that an attribute A is not covered by any constraint or any partial order, then we will
put it in the suggestion A. In other words, the true value of A has to be provided by
the users. We experimentally verify the amount of user interaction needed to resolve
conflicts in Section 6.
Remarks. (1) To specify users’ input, let It in Se be (Ie,4A1 , . . . ,4An) and A ∪ A′ ∪ B
= {A1, . . . , An}, where (i) A is the set of attributes identified in step (4) for which the
true values are unknown; (ii) for B, their true values VB have been deduced (step (2));
and (iii) A′ is the set of attributes whose true values can be deduced from VB and
the suggestion for A. Given a suggestion, the user is expected to provide a set V of
true values for (a subset of) A that they are confident of. Here V consists of either
the candidate values taken from the suggestion, or some new values not in the active
domains of Se that users opt to choose. The users do not have to enter values for all
attributes in A.

From the input V, a partial temporal order Ot is automatically derived, by treating
V as the most current values of those attributes involved. Indeed, Ot has the form
(Ie ∪ {to},4′A1

, . . . ,4′An
), where to is a new tuple such that for all attributes A, to[A] =

V(A) if V has a value V(A) for A, and to[A] = null otherwise, while to[B] = VB remains
unchanged. Moreover, 4′A extends 4A by including t[A] 4′A to[A] if to[A] 6= null, for all
tuples t ∈ Ie. From this, Se ⊕Ot can be readily defined.

(2) The framework requires currency constraints and constant CFDs as input. There
have been efficient methods for discovering constant CFDs, e.g., [Chiang and Miller
2008; Fan et al. 2011]. Along the same lines as CFD discovery, automated methods can
be developed for discovering currency constraints from (possibly dirty) data.

ACM Journal of Data and Information Quality, Vol. V, No. N, Article A, Publication date: January YYYY.

Conflict Resolution with Data Currency and Consistency A:11

Below we outline an alternative approach to discovering currency constraints, by
capitalizing on mining methods for association rules [Calders et al. 2006]. The idea is
to transform the data in an entity instance Ie into a so-called transaction database in
which the attribute values are Boolean. A wide variety of rule discovery methods are
already in place on such kind of databases (see [Goethals 2003] for a survey).

In a nutshell, the database transformation consists of two steps. (1) For each at-
tribute Ai of R we create a new set of attributes consisting of A(,), A(,a) and A(a,) for
all frequent values a ∈ dom(Ai) that occur in Ie. By setting an appropriate frequency
threshold, the number of newly created attributes can be limited. (2) For each pair of
tuples t1, t2 ∈ I we then define a 0/1-tuple t12 over the new set of attributes by letting
t12[A(,)] = 1 if t1 ≺A t2; t12[A(,a)] = 1 if t1 ≺A t2 and t2[A] = a; and t12[A(a,)] = 1
if t1[A] = a and t1 ≺A t2. Otherwise, these attributes are set to 0. In other words, t12
encodes which partial order relationships hold between tuple t1 and t2.

It can now be easily seen that an association rule over the transaction database
corresponds to a currency constraint on Ie and vice versa. We leave the experimental
validation and design of more efficient currency discovery algorithms to future work.

(3) To simplify the discussion we do not allow users to change constraints in Se. We
defer further discussion about this to Section 7.

(4) We assume that the values in entity instances were once correct. When a temporal
instance contains errors, one may inspect different samples and only take those cur-
rency orders that are consistent among the samples or have sufficient support (e.g.,
frequency).

4. FUNDAMENTAL PROBLEMS
In this section, we identify fundamental problems associated with conflict resolution
based on both data currency and consistency, and establish their complexity. These
results are not only of theoretical interest, but also tell us where the complexity arises,
and hence guide us to develop effective (heuristic) algorithms.
Satisfiability. The first one is the satisfiability problem for entity specifications. It
is to decide, given a specification Se = (It,Σ,Γ) of an entity, whether Se is valid, i.e.,
whether there exists a valid completion of Se.

Intuitively, it is to check whether Se makes sense, i.e., whether the currency con-
straints, constant CFDs and partial orders in Se, when put together, have conflicts
themselves. The analysis is needed in step (1) of the framework of Fig. 5. In practice,
this analysis tells us whether we have to revise constraints in Se, or ask users to vali-
date its partial orders.

The problem is obviously important, but is NP-complete. One might think that the
absence of currency constraints or CFDs would simplify the analysis. Unfortunately,
its intractability is rather robust.

THEOREM 4.1. The satisfiability problem for entity specifications is NP-complete. It
remains NP-hard for valid specifications Se = (It,Σ,Γ) of an entity when (1) both Σ and
Γ are fixed; (2) Γ = ∅, i.e., when only currency constraints are present; or (3) Σ = ∅, i.e.,
when only constant CFDs are present.

Proof: For the upper bound it suffices to observe that the following NP algorithm cor-
rectly decides whether a given specification has a valid completion. Given a specifica-
tion Se = (It,Σ,Γ), the algorithm simply guesses a completion Ict of It and then checks
whether (i) Ict |= Σ; and (ii) Ict |= Γ. If the guessed completion passes these checks, then

ACM Journal of Data and Information Quality, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 W. Fan, F. Geerts, N. Tang & W. Yu

the algorithm returns “yes”. Otherwise, the guessed completion is rejected. Note that
a “guess” simply completes the partial orders on the values of It, and there are finitely
many guesses in total. The algorithm is in NP since checking can be done in PTIME.

The NP-lower bound is established by reduction from the 3-satisfiability problem. An
instance of the 3-satisfiability problem is formula ϕ = C1∧· · ·∧Cr with Cj = `j1∨`j2∨`j3,
where for k ∈ {1, 2, 3} and j ∈ [1, r], `jk is either a variable or a negation of a variable
from a set X = {x1, . . . , xn} of variables. It is to determine whether ϕ is satisfiable,
i.e., whether there exists a truth assignment of variables in X that satisfies ϕ. This
problem is known to be NP-complete (cf. [Papadimitriou 1994]).

Given ϕ, we define a specification Se = (It,Σ,Γ) such that there exists a valid com-
pletion of Se if and only if ϕ is satisfiable. The specification Se consists of a temporal
instance It of schema R(D,C, P, U, V,W) and a fixed set of currency constraints Σ. No
constant CFDs are defined in Se. Intuitively, D is to distinguish between tuples that
encode truth assignments and tuples that correspond to clauses in ϕ; C is to identify
variables (by xi) and clauses (by j ∈ [1, r]); P is used to enforce the validity of clauses
and finally, U , V and W represent the positions (1, 2 and 3, resp) of variables in each
clause.

We first explain how the temporal instance It of R together with the currency con-
straints in Σ is to encode truth assignments for X and clauses in ϕ. More specifically,
for each variable xi ∈ X, we use two constants ai and bi such that ai 4A bi encodes
that xi is set to true, whereas bi 4A ai encodes that x̄i is set to true (or, equivalently
that xi is set to false). Here A ranges over attributes U , V and W . More specifically, for
each variable xi ∈ X we include two tuples in It:

(0, xi, 0, ai, ai, ai) and (0, xi, 0, bi, bi, bi).

These encode truth assignments of X. To ensure that the choice of truth value for
variables is consistent, we include the following currency constraints in Σ:

∀t1, t2 (t1[D] = 0 ∧ t2[D] = 0 ∧ t1[C] = t2[C] ∧ t1[A] ≺ t2[A] → t1[B] ≺ t2[B]),

where A and B range over distinct pairs taken from {U, V,W}. These currency
constraints enforce that variables xi are set to true (resp. false) independent of the
position at which they appear in clauses (i.e., in attribute U , V or W).

We next consider the clauses in ϕ. Let Cj = `j1 ∨ `j2 ∨ `j3. observe that this can be
equivalently written as ¯̀j

1 ∧ ¯̀j
2 → `j3. For instance, consider a clause C = x1 ∨ x̄2 ∨ x̄3.

This is equivalent to x̄1 ∧ x2 → x̄3. Given this, we include two tuples in It for each
clause Cj :

(1, j, 1, v1, v2, v3) and (1, j, 2, v′1, v
′
2, v
′
3),

where vi = ak and v′i = bk if `ji = x̄k, and vi = bk and v′i = ak if `ji = xk, for i = 1, 2,
and conversely for i = 3. The example clause C is thus encoded by (1, , 1, b1, a2, b3) and
(1, , 2, a1, b2, a3). The connection between truth assignments selected by completions
and the validity of clauses is established by means of the following currency constraint:

∀t1, t2 (t1[D] = 1 ∧ t2[D] = 1 ∧ t1[C] = t2[C] ∧ t1[P] = 1 ∧ t2[P] = 2

∧ t1[U] ≺ t2[U] ∧ t1[V] ≺ t2[V]→ t1[W] ≺ t2[W]).

This constraint tells us that whenever the truth assignment (represented by a com-
pletion) makes ¯̀j

1 ∧ ¯̀j
2 true, then it must also make `j3 true.

We next show the correctness of the reduction. Suppose that ϕ is true and let µX

be a satisfying truth assignment. We define a valid completion of Se as follows. For
attributes D, C and P we order the tuples in It arbitrarily. For attributes U (and con-
sequently also for V and W by the currency constraints) we set ai 4c

U bi if µX(xi) is

ACM Journal of Data and Information Quality, Vol. V, No. N, Article A, Publication date: January YYYY.

Conflict Resolution with Data Currency and Consistency A:13

true, and bi 4c
U ai otherwise. We need to verify that the second currency constraint is

satisfied. This follows immediately from the fact that each clause is satisfied by µX .
Conversely, suppose that we have a valid completion of Se. From this, we define µX by
simply setting µX(xi) = 1 if ai 4c

U bi and µX(xi) = 0 otherwise. Similarly as above, it
is readily verified that µX satisfies all the clauses. Indeed, this follows from the second
currency constraint given above.

It remains to show that the satisfiability problem is NP-complete when (1) Σ and Γ
are fixed; (2) Γ = ∅; or (3) Σ = ∅. Since we have shown that the satisfiability problem is
in NP, for general Σ and Γ, it suffices to show the lower bounds. Furthermore, observe
the proof above uses (i) a fixed set of currency constraints, i.e., the currency constraints
Σ are independent of the input instance ϕ, and (ii) it does not use any constant CFDs.
In other words, (1) and (2) follow directly from the lower bound proof given above.

It remains to show (3), i.e., the satisfiability problem is NP-hard even when only
constant CFDs are present. We establish this lower bound by reduction from the com-
plement of the tautology problem, which is known to be coNP-complete (cf. [Papadim-
itriou 1994]). An instance of the tautology problem is a formula ϕ = C1∨· · ·∨Cr, where
Cj = `j1 ∧ `j2 ∧ `j3 and each `jk is either a variable or a complement of a variable from
X = {x1, . . . , xn}. It is to determine whether ϕ is true for all truth assignments of X.
We define a specification Se = (It,Σ = ∅,Γ) such that Se has a valid completion if and
only if ϕ is not a tautology.

The temporal instance It of Se is an instance of schema R′(X1, . . . , Xn, C); it consists
of two tuples (0, 0, . . . , 0) and (1, 1, . . . , 1). We impose no currency order or currency
constraints on It. Note that each completion Ict yields a current tuple LST(Ict) that
encodes a truth assignment µX of X in its first n attributes.

The set Γ of constant CFDs is given as follows. For each clause Cj , we define ψj :

∀t (t[L1] = c1 ∧ t[L2] = c2 ∧ t[L3] = c3 → t[C] = 1),

where Li = Xk if `ji or ¯̀j
i is xk and ci = 1 if `ji = xk and ci = 0 if `ji = x̄k, for i = 1, 2, 3.

Clearly, a completion Ict |= ψj if the truth assignment µX encoded by the current tuple
LST(Ict) makes Cj true. We further add the CFD ψC = ∀t (t[C] = 1 → t[C] = 0) to
Γ, which intuitively prevents any clause to be satisfied. Indeed, a completion Ict such
that Ict |= ψC must set the C-attribute of its current tuple to 0. Contrast this with the
requirement on the C-attribute of current tuples imposed by the ψj ’s.

We next show the correctness of the reduction. If ϕ is a tautology then every truth
assignment µX makes at least one clause Cj true. That is, any valid Ict must set the
C-attribute of its current tuple to 1 (by ψj) and at the same time it must set the C-
attribute of its current tuple to 0 (by ψC). Hence, no valid completion can exists. Con-
versely, if there exists a valid completion Ict of Se such that Ict |= Γ, then its current
tuple must have its C-attribute set to 0. In other words, none of the left-hand sides of
the ψj ’s can be true, and hence µX must make all clauses false. In other words, µX is a
counterexample to the validity of ϕ and hence ϕ is not a tautology. 2

Implication. The second problem aims to deduce partial temporal orders that are
logical consequences of the given currency order and currency constraints. Consider
a valid specification Se = (It,Σ,Γ) of an entity e and a partial temporal order Ot =
(Ie,4′A1

, . . . ,4′An
).

We say that Ot is implied by Se, denoted by Se |= Ot, if and only if for all valid
completions Ict of Se, Ot ⊆ Ict . Here Ot ⊆ Ict if 4′Ai

⊆4c
Ai

for all i ∈ [1, n], where Ict =
(Ie,4c

A1
, . . . ,4c

An
).

ACM Journal of Data and Information Quality, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 W. Fan, F. Geerts, N. Tang & W. Yu

The implication problem for conflict resolution is to decide, given a valid specification
Se and a partial temporal order Ot, whether Se |= Ot.

That is, no matter how we complete the temporal instance It of Se, as long as the
completion is valid, the completion includes Ot in its currency orders. The implication
analysis is conducted at step (2) of the framework of Fig. 5, for deducing true values of
attributes.

Unfortunately, this problem is also intractable.

THEOREM 4.2. The implication problem for conflict resolution is coNP-complete. It
remains coNP-hard for valid specifications Se = (It,Σ,Γ) of an entity when (1) both Σ
and Γ are fixed; (2) Γ = ∅; or (3) Σ = ∅.

Proof: The coNP upper bound is verified by providing an NP algorithm for the comple-
ment problem. In a nutshell, given a specification Se = (It,Σ,Γ) and a partial temporal
order Ot, the algorithm simply guesses a completion Ict of It and then verifies whether
(i) Ict |= Σ; (ii) Ict |= Γ; and (iii) Ot 6⊆ Ict . If Ict passes these checks successfully, then
the algorithm returns “yes” since Se 6|= Ot. Otherwise, the current guess is rejected.
This is clearly an NP algorithm for the complement problem and hence the implication
problem is in coNP.

For the lower bounds, we show that the implication problem is coNP-hard when
(1) both Σ and Γ are fixed; (2) Γ = ∅; or (3) Σ = ∅. The lower bounds for (1) and (2)
are established by a revision of the proof of Theorem 4.1. More specifically, we revise
the reduction used there as follows. First, the relation schema used in that proof is
extended with an additional attribute A. Second, each tuple t in the temporal instance
It has now two copies: a tuple ta with its A-attribute set to a constant a, i.e., ta[A] = a,
and a tuple tb with its tb[A] = b. Finally, the premise of each currency constraint used
in that proof carries an additional condition “t1[A] = a ∧ t2[A] = b ∧ t1[A] 4A t2[A]”.
These conditions enforce the constraints to have an effect only on completions in
which b is more current than a in attribute A.

Denote by S′e = (I ′t,Σ
′,Γ = ∅) the specification obtained from Se in the proof of

Theorem 4.1 after such revisions. Let Ot be the partial temporal order (I ′t, {tb 4A

ta}, ∅, . . . , ∅), where ta and tb are the two copies of an arbitrary tuple t in It. We claim
the following: (i) S′e is valid; and (ii) S′e |= Ot if and only if the formula ϕ is not sat-
isfiable. For (i) it suffices to observe that for any completion (I ′t)

c, as long as it puts
tb 4A ta in its currency order for A and arbitrarily completes currency orders for all
the other attributes, it makes a valid completion. Indeed, this is simply because the
conditions added to the premise of constraints used in the proof of Theorem 4.1 are
false, and hence the currency constraint vacuously hold. Hence, S′e is valid.

For (ii), assume first that there exists a truth assignment µX that makes ϕ true. We
define a completion (I ′t)

c of I ′t by setting ta 4A tb, where t is the tuple used to define Ot,
and by completing the currency orders for the attributes based on µX as in the proof
of Theorem 4.1. As a result, Ot 6⊆ (I ′t)

c and S′e 6|= Ot. Conversely, suppose that S′e 6|= Ot.
This implies the existence of a valid completion (I ′t)

c of I ′t that includes ta 4A tb and
satisfies all currency constraints in Σ′. Similar to the proof of Theorem 4.1 it is readily
verified that a truth assignment µX can be constructed from (I ′t)

c that makes ϕ true.
Hence, S′e |= Ot if and only if ϕ is not satisfiable. Observe that the proof only uses a
fixed set of currency constraints and does not require any constant CFDs.

Similarly, the coNP-lower bound for (3) is established by a similar modification of
the specification for its counterpart given in the proof of Theorem 4.2, by reduction
from the tautology problem. More specifically, given an instance ϕ of the tautology

ACM Journal of Data and Information Quality, Vol. V, No. N, Article A, Publication date: January YYYY.

Conflict Resolution with Data Currency and Consistency A:15

problem as stated in the proof of Theorem 4.1, we extend the schema R′ given there
with an additional attribute A. Its temporal instance I ′t now consists of two tuples
t0 = (a, 0, . . . , 0) and t1 = (b, 1, . . . , 1). We further extend the premises of the constant
CFDs ψj and ψC in the proof of Theorem 4.1 with the extra condition “t[A] = a”. That
is, these constant CFDs only have an effect when the current tuple has a as its A-
attribute value. Denote by S′e = (I ′t,Σ = ∅,Γ′) the specification obtained in this way.
Clearly, S′e is consistent since we just need to enforce t0 4c

A t1 in a completion to assure
that the corresponding current tuple vacuously satisfies the CFDs in Γ′. Consider Ot =
(I ′t, {t0 4c

A t1}, ∅, . . . , ∅). Then, similar to the argument given above, one can readily
verify that S′e |= Ot if and only if ϕ is a tautology. 2

True value deduction. The third problem is the true value problem for conflict reso-
lution. It is to decide, given a valid specification Se for an entity e, whether T(Se) exists.
That is, there exists a tuple tc such that for all valid completions Ict of Se, LST(Ict) = tc.

This analysis is needed by step (3) of the framework (Fig. 5) to decide whether Se

has enough information to deduce T(Se), i.e., whether additional temporal information
is needed to determine the true value of e.

No matter how important this problem is, it is also nontrivial: it is coNP-complete,
and remains intractable in several practical special cases.

THEOREM 4.3. The true value problem for conflict resolution is coNP-complete. It
remains coNP-hard for valid specifications Se = (It,Σ,Γ) for an entity even when (1)
both Σ and Γ are fixed; (2) Γ = ∅; or (3) Σ = ∅.

Proof: The upper bound is verified by providing an NP algorithm for the complement
problem. Given a specification Se = (It,Σ,Γ), the algorithm simply guesses two com-
pletions Ict and (Ict)′ of It and then checks whether both completions are valid and
generate different current tuples. If so, the algorithm returns “yes” and concludes that
no true value of Se can be determined. Otherwise, the current guesses are rejected.
This is clearly an NP algorithm for the complement problem, and hence the true value
problem is in coNP.

For the lower bounds, we need to show that the true value problem is coNP-hard
when (1) both Σ and Γ are fixed; (2) Γ = ∅; or (3) Σ = ∅. The lower bounds for (1) and (2)
are verified by a modification of the proof of its counterpart for Theorem 4.2. Indeed,
it suffices to add two tuples ta# = (a,#, . . . ,#) and tb# = (b,#, . . . ,#) to the temporal
instance given there, together with additional currency constraints that enforce # to
come after any other constant in the currency orders for all attributes of the schema
except for A (which does not carry #). Denote by S′′e = (I ′′t ,Σ

′′,Γ = ∅) the specification
obtained in this way from S′e given in the proof of Theorem 4.2. As a consequence, any
completion of S′′e can only yield current tuples ta# or tb#.

As argued there, S′′e is valid since one only has to consider a completion that includes
tb# 4A ta#. Furthermore, we next show that a true value exists if and only if ϕ is not
satisfiable. Indeed, suppose that ϕ is not satisfiable. Then for any valid completion
(I ′′t)c of I ′′t , if (I ′′t)c |= Σ′′, then it has to set tb# 4A ta#, since otherwise the currency
constraints will be triggered and the completion would generate a satisfying truth
assignment for ϕ, which by assumption does not exist. Hence, the true value will be
the tuple ta#. Conversely, suppose that no true value exists. This implies that there
exist two completions of I ′′t , such that one leads to current tuple ta#, and the other one
leads to current tuple tb#. In the second case, ta# 4A tb# and hence, as argued in the

ACM Journal of Data and Information Quality, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 W. Fan, F. Geerts, N. Tang & W. Yu

proof of Theorem 4.2, one can construct a satisfying truth assignment for ϕ from the
completions. Hence, if no true value exists, then ϕ must be satisfiable.

The coNP-lower bound for (3) is established by a modification of the specification
given in the proof for the case of constant CFDs in Theorem 4.2, by reduction from
the tautology problem. The modification is as follows. Given an instance ϕ of the
tautology problem as stated in the proof of Theorem 4.2, we introduce a third tuple
tb = (b, b, . . . , b) to the temporal instance given there, and extend the set Γ′ of constant
CFDs by including ψi

a¬b = ∀t (t[A] = a ∧ t[Xi] = b → t[A] = b), for i ∈ [1, n]. These
constant CFDs prevent the current tuple t in completions from having t[A] = a and
t[Xi] = b for all i ∈ [1, n]. In addition, we add ψi

bb = ∀t (t[A] = b → t[Xi] = b) and
ψbb = ∀t (t[A] = b → t[C] = c). These assure that for all current tuples t, it t[A] = b,
then t has the constant b in all of its attributes.

Denote by S′′e = (I ′′t ,Σ = ∅,Γ′′) the specification obtained this way from S′e given
in the proof of Theorem 4.2. A completion that results in current tuple tb is clearly
a valid completion, and hence S′′e is valid itself. Moreover, it is readily verified that a
true value exists if and only if ϕ is a tautology. Indeed, observe first that completions
either result in the current tuple tb or a tuple of the form (a, µX , 0), where µX is a
truth assignment for X. While tb can always be witnessed by a valid completion of S′′e
(as mentioned above), (a, µX , 0) can only be witnessed provided that µX makes ϕ false
(using the argument given in the proof of Theorem 4.2). Hence tb is the true value if
and only if ϕ is a tautology. 2

Coverage analysis. Finally, the minimum coverage problem is to determine, given a
valid specification Se = (It,Σ,Γ) of an entity and a positive integer k, whether there
exists a partial temporal order Ot such that (1) T(Se ⊕Ot) exists, and (2) |Ot| ≤ k.

Intuitively, this is to check whether one can add a partial temporal order Ot of a
bounded size to a specification such that the enriched specification has sufficient in-
formation to deduce all the true values of an entity. The ability to solve this problem
helps us identify what minimum additional temporal information is needed to deduce
the true value. The analysis of minimum Ot is required by step (4) of the framework of
Fig. 5.

This problem is Σp
2-complete (NPNP or NPcoNP), unfortunately. Worse still, it remains

Σp
2-hard even in several practical special cases, as stated below.

THEOREM 4.4. The minimum coverage problem is Σp
2-complete. It remains Σp

2-hard
for valid specifications Se = (It,Σ,Γ) for an entity even when (1) both Σ and Γ are fixed;
(2) Γ = ∅; or (3) Σ = ∅.

Proof: For the Σp
2 upper bound it suffices to observe that the following NPcoNP algorithm

correctly decides whether there exists a partial temporal order Ot of size |Ot| ≤ k such
that T(Se ⊕ Ot) exists. Given a valid specification Se = (It,Σ,Γ), the algorithm first
guesses a partial temporal order Ot and then checks whether |Ot| ≤ k and whether
T(Se⊕Ot) exists. The latter can be done in coNP (see Theorem 4.3). If the guessed par-
tial temporal order passes these checks, then the algorithm returns “yes”. Otherwise,
the guessed order is rejected. The algorithm is in Σp

2 since it is a non-deterministic
PTIME algorithm by calling a coNP oracle (see, e.g., [Papadimitriou 1994] for detailed
discussion about Σp

2).
We now show that the problem is Σp

2-hard when (1) Σ and Γ are fixed; (2) Γ = ∅; or
(3) Σ = ∅.

For (1) and (2) we establish the Σp
2-lower bound by reduction from the ∃∗∀∗DNF

problem, which is known to be Σp
2-complete [Stockmeyer 1976]. An instance of the

ACM Journal of Data and Information Quality, Vol. V, No. N, Article A, Publication date: January YYYY.

Conflict Resolution with Data Currency and Consistency A:17

∃∗∀∗DNF problem is a formula of the form ϕ = ∃X∀Y ψ, where X = {x1, . . . , xn} and
Y = {y1, . . . , ym}, ψ = C1 ∨ · · · ∨ Cr; for j ∈ [1, r], Cj = `j1 ∧ `j2 ∧ `j3, and for k = 1, 2, 3,
the literal `jk is either a variable or the complement of a variable in X ∪ Y . It is to
determine whether ϕ is true.

Given an instance ϕ of the ∃∗∀∗DNF problem, we define a specification Se = (It,Σ,Γ)
and a constant k such that the minimal coverage problem for Se and k has a solution
if and only if ϕ is true. In particular, in Se we have a fixed set of currency constraints
and no constant CFDs. Hence, the reduction shows (1) and (2).

Recall the relation schema R(A,D,C, P, U, V,W) used in the proof of Theorem 4.2.
We populate its temporal instance It = (I,4A,4D,4C ,4P ,4U ,4V ,4W) as follows. We
assume the presence of 2(n + m) distinct constants ai and bi for i ∈ [1, n] and ci and
di for i ∈ [1,m]. As in the proof of Theorem 4.2, truth values for variables in X are
encoded by means of two tuples:

(a, 0, xi, 0, ai, ai, ai) and (a, 0, xi, 0, bi, bi, bi).

with their A-attribute set to a, and two tuples

(b, 0, xi, 0, ai, ai, ai) and (b, 0, xi, 0, bi, bi, bi).

with their A-attribute set to b. Similarly, truth values for variables in Y are encoded
by the following tuples:

(a, 0, yi, 0, ci, ci, ci) (a, 0, yi, 0, ci, ci, ci)

(b, 0, yi, 0, di, di, di) and (b, 0, yi, 0, di, di, di).

Moreover, we add a currency constraint to Σ for every pair of attributes (L,L′) taken
from {U, V,W}:

∀t1, t2 (t1[D] = 0 ∧ t2[D] = 0 ∧ t1[C] = t2[C] ∧ t1[A] = a ∧ t2[A] = b

∧ t1[A] ≺A t2[A] ∧ t1[L] ≺ t2[L]→ t1[L′] ≺ t2[L′].

These constraints ensure that whenever a ≺A b, the order between ai and bi (resp. ci
and di) is consistent for all attributes U , V and W . As before, ai ≺U bi indicates that
xi is set to true, whereas bi ≺U ai indicates that xi is false; similarly for variables in Y
but using the constants ci and di instead. In other words, with every completion of It in
which a ≺A b, we can associate truth assignments µX and µY of X and Y , respectively.

We next encode the clauses in ϕ in a similar way the one given in the proof of Theo-
rem 4.2. More specifically, given C1 ∨ · · · ∨Cr we encode its negation C̄1 ∧ · · · ∧ C̄r with
C̄j = ¯̀j

1 ∨ ¯̀j
2 ∨ ¯̀j

3. Such clauses can be equivalently written as `j1 ∧ `j2 → ¯̀j
3 by means of

the tuples
(a, 1, j, 1, v1, v2, v3) and (a, 1, j, 2, v′1, v

′
2, v
′
3),

and their b-variants

(b, 1, j, 1, v1, v2, v3) and (a, 1, j, 2, v′1, v
′
2, v
′
3).

Here vi = ak and v′i = bk if `ji = xk, and vi = bk and v′i = ak if ¯̀j
i = xk, for i = 1, 2; we

define vi and v′i the other way around for i = 3; similarly for variables in Y but then
using constants ci and di instead. For example, consider the clause C = x1 ∧ x̄2 ∧ ȳ3
whose complement is C̄ = x̄1 ∨ x2 ∨ y3. Equivalently, we write C̄ as x1 ∧ x̄2 → y3.
Hence, we encode C̄ by (a, 1, , 1, a1, b2, c3) and (a, 1, , 2, b1, a2, d3), together with their
b-counterparts (b, 1, , 1, a1, b2, c3) and (b, 1, , 2, b1, a2, d3).

ACM Journal of Data and Information Quality, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 W. Fan, F. Geerts, N. Tang & W. Yu

The link between truth assignments selected by completions and the validity of
(complemented) clauses is established by the following currency constraint:

∀t1, t2 (t1[D] = 1∧ t2[D] = 1∧ t1[C] = t2[C]∧ t1[P] = 1∧ t1[P] = 2∧ t1[A] = a∧ t2[A] = b

∧ t1[A] ≺A t2[A] ∧ t1[U] ≺ t2[U] ∧ t1[V] ≺ t2[V]→ t1[W] ≺ t2[W].

This constraint tells us that whenever the truth assignment (represented by a comple-
tion) makes `j1 ∧ `j2 true, then it must also make ¯̀j

3 true, provided that a ≺A b.
We also include two tuples ta# = (a,#, . . . ,#) and tb# = (b,#, . . . ,#) in It, which

serves as potential true values of the entity represented by Se. We enforce the symbol
to come after any other constant in currency orders by means of currency constraints
(one for each attribute in R), as defined in the proof of Theorem 4.3. Clearly, in valid
completions, if a ≺A b then tb# is the current tuple; when b ≺A a, ta# is the current tuple.

Finally, we ensure that the partial temporal order Ot can only add currency infor-
mation related to the values ai and bi in the instance, so that Ot can only affect the
choice of truth values for variables in X. To achieve this, observe that given instance
It constructed so far, |Ot| can be no larger than 7|I|2, where 7 is simply the number of
attributes in R. We let k = 7|I|2. Next, for each constant v different from the ai’s and
bi’s we add p > k tuples of the form (vid, v, . . . , v), where vid is a unique identifier for
each of these tuples. Let I ′t denote the temporal instance obtained in this way and let
Se = (I ′,Σ,Γ = ∅). Clearly, for any Ot that relates tuples in an attribute with values
different from ai and bi, Ot will cause the addition of more than k tuples. Indeed, let
B be an arbitrary attribute. Then the addition of t ≺B t′ implies that s ≺B s′ for all
tuples s and s′ that share the same B-attribute value with t and t′, respectively. By the
choice of k and the addition of p > k tuples for each constant, any Ot of size ≤ k can
only relate tuples that contain ai or bi values in one of its attributes.

Observe that the specification Se defined above is valid. Indeed, any completion that
makes a more current than b in the A-attribute vacuously satisfies the currency con-
straints in Σ. As a consequence ta# will always be one of the possible current tuples.

We next show that the minimum coverage problem has a solution if and only if ϕ
is true. Suppose first that ϕ is false. In other words, for every µX of X, there exists a
truth assignment µY of Y that makes C1 ∨ · · · ∨ Cr false. Consider a partial temporal
order Ot with |Ot| ≤ k. By the construction, Ot can only add temporal information
between tuples that concern variables in X. In other words, the impact of Ot is that
it restricts the set of truth assignments of X that can be obtained by means of valid
completions. However, since ϕ is false, even for each µX in this restricted set, there
exists a µY that makes the C1 ∨ · · · ∨ Cr false. This in turn implies that tb# can be a
current tuple in a completion that sets a ≺A b. Indeed, simply consider the completion
that (i) sets a ≺A b; (ii) selects a µX that belongs to the restricted set; (iii) selects µY

such that the clauses are false; and (iv) arbitrarily completes partial currency orders
for the other attributes. It is easily verified that this completion indeed satisfies all
currency constraints since it satisfies the constraints related to truth assignments and
all constraints corresponding to the negated clauses (recall that µX and µY make all
C̄j true). Hence, when ϕ is false, both ta# and tb# are current tuples and no true value
can exist, no matter what Ot is.

Conversely, suppose that ϕ is true. That is, there exists a truth assignment µX of X
such that for all µY of Y , C1 ∨ · · · ∨ Cr is true. We let Ot be the partial temporal order
that restricts the choices of truth assignments for X to be µX . By the construction,
this can be done by using ≤ k added pairs. Then it is impossible that tb# becomes a
current tuple. Indeed, for this to happen we need a completion that sets a ≺A b and

ACM Journal of Data and Information Quality, Vol. V, No. N, Article A, Publication date: January YYYY.

Conflict Resolution with Data Currency and Consistency A:19

satisfiability implication true value minimum coverage
complexity NP-complete coNP-complete coNP-complete Σp

2-complete
(special cases) both Σ and Γ are fixed NP-complete coNP-complete coNP-complete Σp

2-complete
only currency constraints are present NP-complete coNP-complete coNP-complete Σp

2-complete
only constant CFDs are present NP-complete coNP-complete coNP-complete Σp

2-complete

Fig. 6. Complexity of reasoning about conflict resolution

in addition, satisfies all constraints in Σ. This, however, would imply the existence of
a truth assignment µY of Y , which, together with µX , makes C1 ∨ · · · ∨ Cr false. This
is contrast to the assumption that ϕ holds for µX . As a consequence, T(Se ⊕Ot) exists
and is equal to ta#.

Finally, we show that the problem is Σp
2-hard for case (3), when Σ = ∅. This is verified

again by reduction from the ∃∗∀∗DNF problem, but now we use constant CFDs only. The
idea behind the reduction is similar to that of the reduction given for cases (1) and (2).

Given an instance ϕ of the ∃∗∀∗DNF problem, we define a relation schema
R(A,X1, . . . , Xn, Y1, . . . , Ym, C). To populate its corresponding temporal instance It, we
start with two tuples t0 = (a, 0, 0, . . . , 0) and t1 = (b, 1, 1, . . . , 1). Completions thus lead
to current tuples ranging over all possible truth assignments for X and Y . We further
introduce a tuple tb = (b, b, . . . , b), which will correspond to the true value of the entity
if it exists. Finally, let k = n and add p > n tuples of the form (ci, . . . , ci, 0, 0, 0, . . .)
and (ci, . . . , ci, 1, . . . , 1) to It, for i ∈ [1, p]. Here the ci’s are values of the attributes A
and X1, . . . , Xn. We further assume that initial temporal orders are available, assert-
ing that the ci’s come before a, b, 0 and 1. Intuitively, the addition of these p tuples
will cause any additional temporal information in the Y -attributes (and A-attribute)
to have more than “k effects”, i.e., if t0 ≺Y t1 is in Ot, then this addition needs to be
imposed on all p tuples as well since these tuples contain the same values in their Y -
attributes as t0 and t1. As a consequence, any partial temporal order Ot of size ≤ k can
only enrich currency orders for the X-attributes. In other words, adding Ot will cause
the selection of a truth assignment for X.

We use the same constant CFDs as those defined in the proof of Theorem 4.3, and let
Se = (It,Σ = ∅,Γ) be the resulting specification. As argued in the proof of Theorem 4.3,
Se is valid because any completion of Se with a ≺A b satisfies the CFDs in Γ. Recall also
that tb will be the current tuple in this case.

We next show that the minimum coverage problem has a solution for Se and k if and
only if ϕ is true. Indeed, suppose that ϕ is false. Then for all truth assignments µX of
X, there exists a µY of Y , such that C1∨· · ·∨Cr is false. Let Ot be any partial temporal
order of size ≤ k. As argued above, the addition of Ot causes the selection of a subset of
truth assignments of X. For any such µX we have a µY that makes the clauses false. In
other words, a completion exists, which (i) puts b ≺A a; (ii) selects a µX ; and (iii) picks
µY that falsifies ϕ. By the definition of the CFDs, this implies that a current tuple of
the form (a, . . .) exists and hence there is no true value for the entity (since tb is also a
current tuple).

Conversely, if ϕ is true, we simple take Ot that selects the satisfying truth assign-
ment µX of X such that for all µY of Y , all the clauses in ϕ are satisfied. Such Ot can
be taken of size ≤ k. In other words, completions with b ≺A a cannot exist by the def-
inition of the constant CFDs. Hence, tb is the only possible current tuple and thus the
true value of Se exists. 2

Remark. The complexity results are summarized in Fig. 6. From these results we find
the following.
(i) The main conclusion is that while these problems are important in practice, they are

ACM Journal of Data and Information Quality, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 W. Fan, F. Geerts, N. Tang & W. Yu

hard. In fact, we have shown that the lower bounds of all these problems remain intact
for specifications Se = (It,Σ,Γ) of an entity when (1) both Σ and Γ are fixed; (2) Γ = ∅,
i.e., when constant CFDs are absent; or (3) Σ = ∅, i.e., when currency constraints are
absent. Hence unless P = NP, efficient (PTIME) algorithms for solving these problems
are necessarily heuristic.

(ii) The results not only reveal the complexity of reasoning about conflict resolution,
but also advance our understanding of data currency and consistency. Indeed, while
the minimum coverage problem is specific for conflict resolution and has not been
studied before, the other three problems are also of interest to the study of data cur-
rency. Taken together with the complexity results of [Fan et al. 2012], Theorems 4.1,
4.2 and 4.3 show that currency constraints make our lives easier as opposed to
denial constraints: they reduce the complexity of inferring data currency [Fan et al.
2012], from Σp

2-complete, Πp
2-complete (coNPNP) and Πp

2-complete down to NP-complete,
coNP-complete and coNP-complete, respectively,

When it comes to data consistency, it is known that the satisfiability and implication
problems for general CFDs are NP-complete and coNP-complete, respectively [Fan et al.
2008]. Theorems 4.1 and 4.2 give a stronger result: these lower bounds already hold
for constant CFDs.

5. ALGORITHMS FOR CONFLICT RESOLUTION
We next provide algorithms underlying the framework depicted in Fig. 5. We first
present an algorithm for checking whether a specification is valid (step (1) of the
framework; Section 5.1). We then study how to deduce true attribute values from a
valid specification (step (2); Section 5.2). Since not all true attribute values can be de-
duced automatically, we further discuss algorithms to generate suggestions such that
the users may provide true values of some attributes (step (4); Section 5.3), which can
in turn help the deduction procedure.

5.1. Validity Checking
We start with algorithm IsValid that, given a specification Se = (It,Σ,Γ), returns true
if Se is valid, and false otherwise. As depicted in Fig. 5, IsValid is invoked for an initial
specification Se and its extensions Se ⊕Ot with the input Ot from the users.

Theorem 4.1 tells us that it is NP-complete to determine whether Se is valid. In other
words, IsValid is necessarily heuristic if it is to be efficient. Instead of designing an effi-
cient algorithm from scratch, we approach this by reducing the problem to SAT, one of
the most studied NP-complete problems, which is to decide whether a Boolean formula
is satisfiable (see e.g., [Biere et al. 2009]). Several high-performance tools for SAT (SAT-
solvers) are already in place [Biere et al. 2009], which have proved effective in e.g.,
software verification, AI and operations research. For instance, MiniSAT [Giunchiglia
and Tacchella 2004] can effectively solve a formula with 4, 500 variables and 100K
clauses in 1 second.

Algorithm IsValid leverages existing SAT-solvers. We convert a given specification Se

to a propositional formula in the conjunctive normal form (CNF), and then employ a
SAT-solver to decide the satisfiability of Se.
Algorithm. More specifically, given a specification Se of an entity e, IsValid works in
three steps as follows.
(i) Instantiation: First, the specification Se is expressed as a set of (propositional) predi-
cate formulas.
(ii) ConvertToCNF: Then, the predicate formulas from (i) are converted into a CNF such
that the given specification is valid if and only if the CNF is satisfiable.

ACM Journal of Data and Information Quality, Vol. V, No. N, Article A, Publication date: January YYYY.

Conflict Resolution with Data Currency and Consistency A:21

(iii) Finally, a SAT-solver is applied to the CNF resulting from (ii) to determine the
satisfiability of the CNF.

We next present procedures Instantiation and ConvertToCNF. Consider Se = (It,Σ,Γ),
where It = (Ie,4A1

, . . . ,4An
) is a temporal instance of schema R. We denote also by R

the set {Ai | i ∈ [1, n]} of attributes in R. We define the extended active domain of Ai,
denoted by adomv(Ie.Ai), to be the set including all the values in adom(Ie.Ai) and all
the constants that appear in attribute Ai of some constant CFD in Γ. To check whether
Se is satisfiable, it suffices to consider the values from the extended active domains
only.

Instantiation. To uniformly treat partial currency orders, currency constraints and con-
stant CFDs as predicate formulas, we introduce a notion of instance constraints. The
set of instance constraints of Se, denoted as Ω(Se), is defined in terms of values in
the extended active domains, and a strict partial order ≺v

Ai
on adomv(Ie.Ai). These

constraints are derived from Se as follows.

(1) Currency orders. To encode the partial currency orders in It, for each Ai ∈ R, we
include the following instance constraints in Ω(Se).

(a) Partial orders in It: (true→ t1[Ai] ≺v
Ai

t2[Ai]) for each t1 4Ai
t2 in It, as long as

t1[Ai] 6= t2[Ai].
(b) Transitivity of ≺Ai : (a1≺v

A a2∧a2≺v
A a3→a1≺v

A a3) for all distinct values a1, a2, a3 in
adomv(Ie.Ai).

(c) Asymmetry: (a≺v
Ai
b)→¬(b≺v

Ai
a) for all distinct values a, b∈adomv(Ie.Ai).

Intuitively, these assure that each ≺v
Ai

is a strict partial order (via both (b) and (c)),
and express available temporal information in It as predicate formulas (via (a)).

(2) Currency constraints. For each currency constraint ϕ = ∀t1, t2 (ω → t1 ≺Ar
t2) in Σ

and for all distinct tuples s1, s2 ∈ Ie, we include the following in Ω(Se):

ins(ω, s1, s2) → s1[Ar]≺v
Ar
s2[Ar],

where ins(ω, s1, s2) is obtained from ω by (a) substituting si[Aj] for ti and≺v
Aj

for≺Aj

in each predicate t1 ≺Aj
t2, for i ∈ [1, 2]; and (b) evaluating each conjunct of ω defined

with a comparison operator to its truth value w.r.t. s1 and s2. Intuitively, ins(ω, s1, s2)
“instantiates” ω with values in s1 and s2.
Example 7: For currency constraint ϕ1 in Fig. 3, and tuples r1 and r2 in Fig. 2 for
Edith, its instance constraint is derived to be (true→ working ≺v

status retired). Observe
that the precondition of ϕ1 is evaluated to be true on these two particular tuples, by
instantiating variables of ϕ1 with values in r1 and r2.

Similarly, from currency constraint ϕ6 and tuples r1 and r2, we derive instance con-
straint (working ≺v

status retired→ 212 ≺v
AC 415), by replacing ≺status with ≺v

status, and by
replacing variables in ϕ6 with the corresponding attribute values from r1 and r2. 2

(3) Constant CFDs. For each CFD ∀t (ν → t[Ar] = cr) in Γ and each c∈adomv(Ie.Ar)\{cr},
Ω(Se) includes

ψ = (ν′ → c ≺v
Ar

cr),

where ν′ is obtained from ν by replacing each conjunct t[Aj] = cj in ν with the conjunc-
tion

∧
c c≺v

Aj
cj , where c ranges over all the values in adomv(Ie.Aj) \ {cj}.

Intuitively, constraint ψ asserts that if ν describes true values in the attributes in
ν, then cr is the true value of attribute Ar. Indeed, the CFD is defined on LST(Ict) for a
completion Ict of It (see Section 2.2), and ψ assures that this semantics is enforced.

ACM Journal of Data and Information Quality, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 W. Fan, F. Geerts, N. Tang & W. Yu

Example 8: Recall constant CFD ψ1 from Fig. 3. For the entity instance E1 of Edith,
the CFD is encoded by two instance constraints given below, included in ΩE1 :

212 ≺v
AC 213 ∧ 415 ≺v

AC 213→ NY ≺v
city LA,

212 ≺v
AC 213 ∧ 415 ≺v

AC 213→ SFC ≺v
city LA,

i.e., LA is her true city value if her true AC is 213. 2

ConvertToCNF. After we derive Ω(Se), we convert the instance constraints of Ω(Se) into
a CNF Φ(Se) as follows. We first substitute a Boolean variable xAi

a1a2
for each predicate

a1≺v
Ai
a2 in Ω(Se). We then rewrite each formula of the form (x1∧· · ·∧xk→xk+1) into

the equivalent form (¬x1∨· · ·∨¬xk∨xk+1). Finally, Φ(Se) is defined to be the conjunction
of all such formulas obtained from Ω(Se), which is obviously in CNF.

One can readily verify the following (by contradiction), which justifies the reduction
from the satisfiability of the specification Se to the SAT instance Φ(Se).

LEMMA 5.1. Specification Se is valid if and only if its converted CNF Φ(Se) is satis-
fiable.

Complexity: Observe the following. (a) The size |Ω(Se)| of Ω(Se) is bounded by
O((|Σ| + |Γ|)|It|2 + |It|3), since encoding currency orders, currency constraints and
constant CFDs is in time O(|It|3), O(|Σ||It|2) and O(|Γ||It|2), respectively. (b) It takes
O(|Ω(Se)|) time to convert Ω(Se) into Φ(Se). Hence the size of the CNF Φ(Se) is bounded
by O((|Σ|+ |Γ|)|It|2 + |It|3). In practice, an entity instance It is typically much smaller
than a database, and the sets Σ and Γ of constraints are also small. As will be seen in
Section 6, SAT-solvers can efficiently process CNFs of this size.

5.2. Deducing True Values
We next present an algorithm that, given a valid specification Se = (It,Σ,Γ) of an
entity e, deduces true values for as many attributes of e as possible.

Intuitively, it is to find a maximum partial order Od such that Se |= Od, i.e., (a) for all
valid completions Ict of Se, Od ⊆ Ict (Section 4), and (b) for tuples t1, t2 ∈ Ie and Ai ∈ R,
if Se |= t1≺Ai

t2 then t1≺Ai
t2 is in Od.

5.2.1. Partial Order Deduction. To deduce true values, below we first present a heuristic
approach, and then discuss an exact algorithm.

A heuristic approach. Given Se, we want to deduce a maximum partial order Od

such that Se |= Od. As an immediate corollary of Theorem 4.2, one can show that the
decision version of this problem is also coNP-complete, even when either Σ or Γ is fixed
or absent. Thus we give a heuristics to strike a balance between its complexity and
accuracy. The algorithm is based on the following lemma, which is easy to verify.

LEMMA 5.2. For the CNF Φ(Se) converted from a valid specification Se, and for all
tuples t1, t2 in Se such that t1[Ai] = a1 and t2[Ai] = a2, Se |= t1 ≺Ai t2 if and only if
Φ(Se)→ xAi

a1a2
is a tautology, where xAi

a1a2
is the variable denoting a1≺v

Ai
a2 in Φ(Se).

Observe that the condition Φ(Se) → xAi
a1a2

indicates that for any truth assignment
µ, if µ satisfies Φ(Se), then µ(xAi

a1a2
) is true. That is, the one-literal clause xAi

a1a2
is im-

plied by Φ(Se), which in turn encodes Se. Based on this observation, our algorithm
checks one-literal clauses in Φ(Se) one by one, and enriches the known partial order
accordingly.
Algorithm. The algorithm for deducing true values, referred to as DeduceOrder, is
given in Fig. 7. It first converts a specification Se to the CNF Φ(Se) (lines 1-2; see Sec-

ACM Journal of Data and Information Quality, Vol. V, No. N, Article A, Publication date: January YYYY.

Conflict Resolution with Data Currency and Consistency A:23

Algorithm DeduceOrder
Input: A valid specification Se = (It,Σ,Γ) of an entity.
Output: A partial temporal order Od such that Se |= Od.
1. Ω(Se) := Instantiation(Se);
2. Φ(Se) := ConvertToCNF(Ω(Se));
3. Od := (Ie, ∅, . . . , ∅);
4. while there exists a one-literal clause C in Φ(Se) do

/* xAa1a2
in C is the variable denoting a1 ≺v

A a2 */
5. if C is a one-literal clause (xAa1a2

) then
6. add a1 ≺v

A a2 to Od;
7. C¬ := ¬xAa1a2

;
8. if C is a one-literal clause (¬xAa1a2

) then
9. add a2 ≺v

A a1 to Od;
10. C¬ := xAa1a2

;
11. for each C ′ ∈ Φ(Se) do
12. if C ′ contains C¬ then
13. C ′ := C ′ \ C¬;
14. if C ′ contains C then
15. Remove C ′ from Φ(Se);
16. return Od.

Fig. 7. Algorithm DeduceOrder

tion 5.1). For each literal C of the form xAi
a1a2

or ¬xAi
a1a2

, it checks whether C is a clause
in (i.e., implied by) Φ(Se) (line 4); and if so, it will enrich the partial order Od (lines 5-
10). It then reduces Φ(Se) by using C and its negation C¬ (lines 11-15). That is, for each
clause C ′ that contains C, the entire C ′ is removed since C ′ is true if C has to be sat-
isfied (lines 12-13). Similarly, for each clause C ′′ that contains C¬, C¬ is removed from
C ′′, as C¬ has to be false (lines 14-15). The deduced partial order Od is then returned
(line 16).
Example 9: Given the entity instance E2 of Fig. 2 and the constraints of Fig. 3,
DeduceOrder finds Od including: (1) 0 ≺v

kids 2 by ϕ4, (2) working ≺v
status retired by ϕ1,

(3) sailor ≺v
job veteran, 401 ≺v

AC 212 and 02840 ≺v
zip 12404, by (2) and ϕ5, ϕ6 and ϕ7,

respectively.
Assume additionally that the users assure that the true value of the attribute status

is retired, i.e., unemployed ≺v
status retired is part of the initial currency order. Then

DeduceOrder can extend Od including: (1) n/a ≺v
job veteran by ϕ5, (2) 312 ≺v

AC 212 by ϕ6

and (3) 60653 ≺v
zip 12404 by ϕ7. Furthermore, from 312 ≺v

AC 212 and 401 ≺v
AC 212 and

the constant CFD ψ2, DeduceOrder adds Newport ≺v
city NY and Chicago ≺v

city NY to Od.
Finally, using the information in Od related to the attributes city and zip, DeduceOrder
adds Rhode Island ≺v

county Accord and Bronzeville ≺v
county Accord to Od.

This again illustrates that inferences of currency constraints help consistency infer-
ence and vice versa. 2

Complexity. (1) It takes O((|Σ|+ |Γ|)|It|2 + |It|3) time to convert Se into Φ(Se) (lines 1-
2; see Section 5.1). (2) The total time taken by the while loop (lines 4-15) is in O((|Σ|+
|Γ|)|It|2+ |It|3). Indeed, we maintain a hash-based index for literals C, in which the key
is C and its value is the list of clauses in Φ(Se) that contain C or C¬. In the process,
Φ(Se) decreases monotonically. Hence in total it takes at mostO(|Φ(Se)|) time to reduce

ACM Journal of Data and Information Quality, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 W. Fan, F. Geerts, N. Tang & W. Yu

Algorithm NaiveDeduce
Input: A valid specification Se = (It,Σ,Γ) of an entity.
Output: A partial temporal order O′d such that Se |= O′d.
1. Ω(Se) := Instantiation(Se);
2. Φ(Se) := ConvertToCNF(Ω(Se));
3. O′d := (Ie, ∅, . . . , ∅);
4. for each A ∈ R do
5. for each a1, a2 ∈ adomv(A) do

/* xAa1a2
is the variable denoting a1 ≺v

A a2 */
6. if ¬ SAT(Φ(Se) ∪ {¬xAa1a2

}) then
7. add a1 ≺v

A a2 to O′d;
8. return O′d.

Fig. 8. Algorithm NaiveDeduce

Φ(Se) for all literals, where |Φ(Se)| is bounded by O((|Σ|+ |Γ|)|It|2+ |It|3). Putting these
together, the algorithm works in O((|Σ|+ |Γ|)|It|2 + |It|3) time.

An exact approach. By Lemma 5.2, one might want to compute a temporal order
O′d consisting of all such variables xAi

a1a2
that Φ(Se) ∧ ¬xAi

a1a2
is not satisfiable. That is,

for each variable xAi
a1a2

, we inspect the satisfiability of Φ(Se) ∧ ¬xAi
a1a2

by invoking an
SAT-solver.

This approach, referred to as NaiveDeduce, is given in Fig. 8. It first converts specifi-
cation Se to the CNF Φ(Se) (lines 1-2). For each attribute A (line 4), it then enumerates
value pairs (a1, a2) in adomv(A) (line 5). It examines whether Φ(Se) → xAa1a2

is a
tautology by invoking the SAT-solver to check whether Φ(Se) ∧ ¬xAa1a2

is not satisfiable
(line 6). If Φ(Se) → xAa1a2

is a tautology, it adds a1 ≺v
A a2 to O′d (line 7). The procedure

returns O′d when all the possible partial orders are examined (line 8).
NaiveDeduce is an exact algorithm for deducing O′d provided that the SAT-solver it

invokes is an exact algorithm. However, NaiveDeduce calls the SAT-solver |It|2 times.
As will be seen in Section 6, DeduceOrder finds an Od with accuracy comparable to O′d,
without incurring the cost of repeatedly calling an SAT-solver.

5.2.2. True Value Deduction. Using the partial temporal order Od found by DeduceOrder
or NaiveDeduce, one can readily deduce true attributes values as follows: a value a1 is
the true value of attribute Ai if for all values a2 ∈ adomv(Ie.Ai) \ {a1}, the currency
order a2 ≺v

A a1 is in Od. Let B ⊆ R be the set of attributes for which true values VB
can be deduced. For all remaining attributes, i.e., those for which true values cannot
be deduced, we put variables as placeholders for their true values that may be inferred
after more currency information becomes available.
Example 10: Recall the temporal order Od from Example 9. Let us first consider Od

before we know that the true value of the attribute status is retired. Then, the cur-
rent tuple of George is of the form (George, xstatus, xjob, 2, xcity, xAC, xzip, xcounty), with
variables. In this case, B = {name, kids}.

In contrast, when the true value of the attribute status is assumed to be retired, then
we can derive from Od that George’s current tuple is t2 = (George, retired, n/a, 2, NY,
212, 12404, Accord). In this case B consists of all attributes. 2

ACM Journal of Data and Information Quality, Vol. V, No. N, Article A, Publication date: January YYYY.

Conflict Resolution with Data Currency and Consistency A:25

5.3. Generating Suggestions
To identify the true value of the entity e specified by Se = (It,Σ,Γ), instead of asking
the users for input on all those attributes whose true values remain unknown, i.e., for
attributes in R\B, we compute a suggestion for a set of attributes A ⊆ R, disjoint from
B, such that if the true values for A are validated, the true value of the entire e can
be determined, even for attributes in R \ (B ∪ A) (see Fig. 5). Below we first formally
define suggestions and a notion of derivation rules (Section 5.3.1). We then provide an
algorithm for computing suggestions (Section 5.3.2).

5.3.1. Suggestions and Derivation Rules. For each attributeAi ∈ R\B, we denote by V(Ai)
the set of candidate true values for Ai, i.e., for any candidate a1 ∈ V(Ai), there exists
no a2 ∈ adomv(Ie.Ai) \ {a1} such that a1 ≺v

A a2 is in Od. For a set X of attributes, we
write V(X) = {V(Ai) | Ai ∈ X}.
Suggestion. A suggestion for Se is a pair (A,V(A)), where A = (A1, . . . , Am) is a set
of attributes of R such that A ∩ B = ∅ and moreover, (1) there exist values (a1, . . . , am)
such that if (a1,. . ., am) are validated as the true values of A, then the true value T(Se)
of Se exists; and (2) for all possible values (a′1, . . . , a

′
m) that satisfy condition (1), a′i is in

V(Ai) for i∈ [1,m].
Intuitively, condition (1) says that when the true values of A are validated, so is

T(Se). That is, the true values of attributes in A′ = R\ (B∪A) can be automatically de-
duced from VB and the true values of A. Condition (2) says that V(A) gives “complete”
candidates for the true values of A from their active domains.

One naturally wants a suggestion to be as “small” as possible, so that it takes the
users minimal efforts to validate the true values of A. This motivates us to study
the minimum suggestion problem, which is to find a suggestion (A,V(A)) with the
minimum number |A| of attributes. Unfortunately, this problem is Σp

2-complete (NPNP),
which can be verified by reduction from the minimum coverage problem (Theorem 4.4).

COROLLARY 5.3. The (decision version of) minimum suggestion problem for conflict
resolution is Σp

2-complete.

Proof: It suffices to observe that a solution of the minimal suggestion problem of size `
relates to a solution of the minimal coverage problem of size k = `|I|2. Conversely, one
can show that a solution of the minimal coverage problem of size k relates to a solution
of the minimal suggestion problem of size dk/|I|2e. 2

In light of the high complexity, we develop an effective heuristic algorithm to com-
pute suggestions. To do this, we examine how true values are inferred by using cur-
rency constraints and constant CFDs in a specification Se, by expressing them as a
uniform set of rules.
Derivation rules. A true-value derivation rule for Se has the form (X,P [X])→ (B, b),
where (1) X is a set of attributes, B is a single attribute, (2) b is a value that is either
in adomv(Ie.B); and (3) for each Ai ∈ X, P [Ai] is drawn from adomv(Ie.Ai). It assures if
P [X] is the true value of X, then b is the true value of B.

Derivation rules are computed from instance constraints Ω(Se) of Se, which is illus-
trated below and will be elaborated in Section 5.3.2.
Example 11: Sample rules for George in Fig. 2 include:

n1 : ({status}, {retired})→ (job, veteran)
n2 : ({status}, {retired})→ (AC, 212)
n3 : ({status}, {retired})→ (zip, 12404)
n4 : ({city, zip}, {NY, 12404})→ (county, Accord)

ACM Journal of Data and Information Quality, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 W. Fan, F. Geerts, N. Tang & W. Yu

n1

n2

n3 n4

n5

n6

n7

n8

n9

C1

C2

Fig. 9. Sample compatibility graph

n5 : ({AC}, {212})→ (city, NY)
n6 : ({status}, {unemployed})→ (job, n/a)
n7 : ({status}, {unemployed})→ (AC, 312)
n8 : ({status}, {unemployed})→ (zip, 60653)
n9 : ({city, zip}, {Chicago, 60653})→ (county, Bronzeville)

Here rule n5 is derived from CFD ψ2, which states that if his true AC is 212, then his
true city must be NY. Rule n1 is from tuple r5 and constraint ϕ5 (Fig. 3), which states
that if his true status is retired, then his true job is veteran. Note that in n1, status is
instantiated with retired. Similarly, n6 is derived from r6 and ϕ5; n2 and n3 (resp. n7
and n8) are derived from tuple r5 (resp. r6) and constraints ϕ6 and ϕ7, respectively; and
n4 (resp. n9) is derived from r5 (resp. r6) and ϕ8. 2

The intuition behind our heuristic is as follows. To find a suggestion, we pick a set
A of attributes so that a maximum number of derivation rules can be applied to them,
directly or indirectly in the derivation process. As a consequence, we want to derive the
true values of as many other attributes as possible from these rules. To capture this
idea, we introduce a notion of compatibility graphs, to represent rules that can either
be directly applied or be indirectly applied in the derivation process.
Compatibility graphs. Consider a set Π of derivation rules. The compatibility graph
G(N,E) of Π is an undirected graph, where (1) each node x inN is a rule (Xx, Px[Xx])→
(Bx, bx) in Π, and (2) an edge (x, y) is in E if and only if Bx 6= By and Px[Xxy] = Py[Xxy],
where Xxy = (Xx ∪Bx) ∩ (Xy ∪By).

Intuitively, two nodes are connected (i.e., compatible) in G if their associated deriva-
tion rules derive different attributes (i.e., Bx 6= By), and they agree on the values of
their common attributes (i.e., Px[Xxy] = Py[Xxy]). Hence these rules have no conflict
with each other and can be applied at the same time.
Example 12: The compatibility graph of the rules given in Example 11 is shown in
Fig. 9. There is an edge (n1, n2) in the graph since their common attribute status has
the same value retired; similarly for the other edges. In contrast, there is no edge
between n5 and n7 since the values of their common attribute AC are different: 212 for
n5 and 312 for n7. 2

Observe that each clique C in the compatibility graph indicates a set of derivation
rules that can be applied together. LetA′ be the set of attributes whose true values can
be derived from the rules in C, if C and Se have no conflicts (will be discussed shortly).
To find a suggestion, we compute a maximum clique C from the graph, and derive a
suggestion as (A,V(A)) from C, where A consists of attributes in R \ (A′ ∪B), and V(A)
is the set of candidate true values for A.
Example 13: Example 6 shows that for George with entity instance E2, only the true
values of name and kids are known, i.e., B = {name, kids} and VB = (George, 2). To find a
suggestion for George, we identify a clique C1 with five nodes n1–n5 in the compatibility

ACM Journal of Data and Information Quality, Vol. V, No. N, Article A, Publication date: January YYYY.

Conflict Resolution with Data Currency and Consistency A:27

Algorithm Suggest

Input: A specification Se = (It,Σ,Γ) of an entity,
order Od (Se |= Od), and VB.

Output: A suggestion (A,V(A)).
1. V(R) := DeriveVR(It, Od);
2. Ω(Se) := Instantiation(Se);
3. Π := TrueDer(Ω(Se),V(R));
4. G := CompGraph(Π, Se);
5. C := MaxClique(G);
6. A := GetSug(Se, C,Ω(Se),VB);
7. return (A,V(A));

Fig. 10. Algorithm Suggest

graph of Fig. 9. Observe the following. (a) The values of job, AC and zip depend on
the value of status by rules n1, n2 and n3, respectively. (b) The value of AC in turn
decides city by n5. (c) From city and zip one can derive county by n4. Hence, the set
of attributes that can be derived from clique C1 is A′ = {job,AC, zip, city, county}. This
yields a suggestion (A,V(status)), where A = R \ (A′ ∪ B) = {status}, and V(status) =
{retired, unemployed}. As long as users identify the true value of status, the true value
of George exists, and can be automatically deduced as described in Example 9. 2

However, a clique C and Se may still have conflicts and as a result, C may not yield a
valid completion of Se, as illustrated by the example below.
Example 14: Consider the clique C2 shown in Fig. 9 with three nodes n5, n6 and n8.
Observe the following: (a) n5 indicates that 312 ≺v

AC 212, since 212 is assumed the
latest AC value; whereas (b) n6, n8 and constraint ϕ6 in Fig. 3 state that 312 is the
latest AC value, i.e., 212 ≺v

AC 312. Therefore, the values embedded in clique C2 may not
lead to a valid completion for entity instance E2, i.e., C2 and Se have conflicts. 2

To handle conflicts between C and Se, we use MaxSat to find a maximum subgraph
C′ of C that has no conflicts with Se (MaxSat is to find a maximum set of satisfiable
clauses in a Boolean formula; see e.g., [Selman and Kautz 2004]). For instance, for
clique C2 of Example 14, we use a MaxSat-solver [Selman and Kautz 2004] to identify
clique C′2 with nodes n6 and n8, which has no conflicts with the specification for George.
We then derive A′ = {job, zip} from C′2. Since B is {name, kids} (Example 13), we find
A = R \ (A′ ∪ B) = {status, city,AC, county} for a suggestion.

5.3.2. Computing Suggestions. We are now ready to present the algorithm for comput-
ing suggestions, referred to as Suggest, which is shown in Fig. 10. It takes as in-
put a specification Se of e, partial orders Od deduced from Se (Se |= Od, by Algo-
rithm DeduceOrder), and the set VB of validated true values. It finds and returns a
suggestion (A,V(A)).

Algorithm Suggest first computes candidate true values for all attributes whose true
values are yet unknown (line 1). It then deduces a set of derivation rules from the
instance constraints Ω(Se) (line 2) of Se (line 3; as illustrated in Example 11). Based
on these derivation rules, it builds a compatibility graph (line 4; see Example 12) and
identifies a maximum clique C in the graph (line 5). Finally, it generates a suggestion
using the clique (line 6; see Examples 13 and 14).

We next present the details of the procedures used in algorithm Suggest one by one.

DeriveVR. For each attribute A whose true value is yet unknown, it computes a set
V(A) of candidate true values for A. Observe that given an attribute A, for any value
a1 in its active domain adomv(A), if there exists another value a2 also from adomv(A),

ACM Journal of Data and Information Quality, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 W. Fan, F. Geerts, N. Tang & W. Yu

Procedure TrueDer

Input: A specification Se of an entity,
a set of instance constraints Ω(Se), and
the candidate true values V(R).

Output: A set Π of derivation rules.
1. Π := ∅ ;
2. for each ∀t (ν → t[Ar] = cr) ∈ Γ, ν =

∧k
i=1 t[Ai] = ci do

3. if for all attribute Ai ∈ B, ci ∈ V (A) then
4. Π := Π ∪ {({A1, . . . , Ak}, {c1, . . . , ck})→ (Ar, cr)};
5. for each B ∈ R do
6. for each b ∈ V (B) do
7. U(B,b) := {bi ≺v

B b | bi ∈ V(B) \ {b}};
8. Ω(B,b) := {φ | φ ∈ Ω(Se) ∧ φ = ω → bi ≺v

B b};
9. X := ∅;P (X) := nil; success := true;
10. for each bi ∈ U(B,b) do
11. pick a rule φ from Ω(B,b) for bi ≺B b;
12. if P (X) satisfies φ then
13. populate X,P (X);
14. else success :=false; break ;
15. if success then Π := Π ∪ {(X,P (X))→ (B, b)};
16. return Π;

Fig. 11. Procedure TrueDer

such that a1 ≺v
A a2, then a1 is not the true value for A. In other words, a1 is known not

to be the most current value.
Based on this observation, DeriveVR works as follows (not shown). Initially, V(A)

takes the active domain adomv(Ie.A). It then removes all values a1 in adomv(Ie.A) from
V(A) for which there exists a value a2 in adomv(Ie.A)\{a1} such that a1 ≺v

A a2 is in the
deduced partial order Od, as a2 is more current than a1 in A. DeriveVR takes O(|It|2)
time with an index, since it checks at most |Od| partial orders, and |Od| ≤ |It|2.

TrueDer. Given a set Ω(Se) of instance constraints, procedure TrueDer deduces a set
Π of derivation rules following the same way as shown in Example 11.

(1) From constant CFDs, the derivation rules could be deduced directly as long as they
do not have conflicts with the candidate true values derived by DeriveVR.

(2) From those instance constraints that represent currency constraints and currency
orders, it deduces derivation rules of the form (X,P (X))→ (B, b), for each attribute B
whose true value is unknown and for each b ∈ V(B), if such a rule exists. While it is
prohibitively expensive to enumerate all these rules, we use a heuristics to find a set of
derivation rules. For each candidate true value b, it first identifies instance constraints
that could complement the missing partial orders when assuming b as true value. Then
it maintains and populates pattern (X,P (X)) from unknown attributes and candidate
true values that could satisfy the premise of each of those instance constraints.

For example, the rule n1 in Example 11 could be deduced as follows. Observe that
with ϕ5 (Fig. 3) and r5, r6 (Fig. 2), the instance constraint

(unemployed ≺v
status retired→ n/a ≺v

job veteran)

could be derived. Here V(job) consists of 2 values “n/a” and “veteran”. The users may
inspect the two values and choose one from the two as the true value of V(job). If one
wants to assume “veteran” as the true value, “n/a ≺v

job veteran” is missing from the par-
tial order. Nonetheless, this can be complemented with the instance constraint given
above. In light of this, we populate X as {status}, and P (X) as “retired” (∈ V(status)) to

ACM Journal of Data and Information Quality, Vol. V, No. N, Article A, Publication date: January YYYY.

Conflict Resolution with Data Currency and Consistency A:29

Procedure CompGraph

Input: A set Π of derivation rules, and a specification Se.
Output: A compatibility graph G of Π.
1. initialize G to be an empty graph;
2. for each derivation rule n ∈ Π do
3. add a node in G for n;
4. for each node ni ∈ G do
5. for each node nj ∈ G where ni 6= nj do
6. if ni and nj are compatible then
7. add an edge (ni, nj) to G;
8. return G;

Fig. 12. Procedure CompGraph

satisfy the premise of the constraint. When (X,P (X)) is in place, the derivation rule
n1 : ({status}, {retired})→ (job, veteran) can be deduced.

More specifically, procedure TrueDer is given in Fig. 11. It works as follows, starting
with an empty set Π of derivation rules (line 1).

(1) Deduce rules from CFDs: for each constant CFD ∀t (ν → t[Ar] = cr) ∈ Γ with ν =∧k
i=1 t[Ai] = ci, we check the following (line 2). If for each conjunct t[Ai] = ci in ν,

with Ai ∈ B, we have that ci∈V(A), i.e., when the values of the CFD have no conflict
with those candidate true values (line 3), then we add ({A1, . . . , Ak}, {c1, . . . , ck})→
(Ar, cr) as a new derivation rule (line 4).

(2) Deduce rules from those instance constraints in Ω(Se) that represent currency con-
straints and partial currency orders in Se, as follows:
(i) for each attribute B whose true value is unknown (line 5) and each value b in

V(B) that can possibly be its true value (line 6), let U(B,b) = {bi ≺v
B b | bi ∈

V(B) \ {b}}, which is the set consisting of all the missing partial orders when b
is assumed to be the true value of B (line 7);

(ii) partition instance constraints based on U(B,b): for each value b in U(B,b), let
Ω(B,b) consist of all instance constraints φ ∈ Ω(Se) such that φ is of the form
ω → bi ≺v

B b (line 8); note that each φ appears in at most one of the partitions;
(iii) for each bi ∈ U(B,b) (line 10), we pick a rule φ = ω → bi ≺v

B b from Ω(B,b) (line 11);
we then expand X and the pattern P (X) so that the premise ω can be satisfied
(line 13), until either (X,P (X)) can no longer satisfy ω (success = false) (line 14),
or each bi ≺v

B b in U(B,b) is covered by such a rule φ (success = true); in the latter
case, we add the rule (X,P (X))→ (B, b) to Π (line 15). Note that |X| ≤ |R|.

The procedure is inO((|Σ|+|Γ|)|It|2+|It|3) time. Indeed, the cost of step (1) is bounded
by O(|Γ|); and for step (2), since U(B,b)’s are disjoint, Ω(B,b)’s partition Ω(Se), and more-
over, each φ in Ω(Se) is used at most once, it takes at most O((|Σ| + |Γ|)|It|2 + |It|3)
time.

CompGraph. Given a set of derivation rules, procedure CompGraph generates their
compatibility graph G(N,E) (see Example 12 for a running example).

More specifically, CompGraph is presented in Fig. 12. It takes a set Π of derivation
rules as input. It constructs and returns a compatibility graph for Π. The procedure
works as follows. It first initializes a compatibility graph (line 1). It then generates a
node for each derivation rule (line 2). The edges are then added (lines 3-6). For any
two distinct nodes, if their associated rules are compatible (line 5, see the definition
of compatibility graphs given earlier), an edge is added to connect these two nodes
(line 6). It terminates and returns a compatibility graph G (line 7).

ACM Journal of Data and Information Quality, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 W. Fan, F. Geerts, N. Tang & W. Yu

Procedure GetSug

Input: A specification Se, instance constraints Ω(Se),
a clique C, and VB.

Output: A set A of attributes as suggestion.
1. A′ := R;P ′[A′] := nil;
2. for each (X,P (X))→ (B, b) ∈ C do
3. A′ := A′ \ {B}
4. P ′[X] := P (X);
5. instantiate P ′ and convert P ′ to CNF Φ′;
6. Φu := Φ′ ∪ Φ(Se);

/* each clause in Φ′ is assigned with a weight of 1.0,
and each clause in Φ(Se) is assigned with a weight of +∞.*/

7. Φs := Weighted-MAXSAT (Φu);
8. convert Φs to P ′′;
9. A := R \ VB;
10. for each (X,P (X))→ (B, b) ∈ C do
11. if P (X) 6= P ′′[X] then remove (X,P (X))→ (B, b) from C;
12. else A := A \ {B};
13. return A;

Fig. 13. Procedure GetSug

It is readily to verify that the procedure takes at most O(|Π|2) time, where |Π| is no
larger than |R||It|.

MaxClique. Given a compatibility graph G(N,E), this procedure computes a maxi-
mum clique C of G(N,E). While it is intractable to find a maximum clique, several
tools have been developed for computing maximum cliques, with a good approximation
bound (e.g., [Feige 2005]). We employ one of these tools as MaxClique.

GetSug. Given a specification Se of an entity, a set Ω(Se) of instance constraints, a
clique C, and VB, the procedure computes a suggestion as output. As shown in Ex-
amples 13 and 14, the clique returned by MaxClique represents a suggestion, but the
suggestion may contain conflicts. This procedure is to convert the clique to a sugges-
tion, and revise it in the presence of conflicts by invoking a weighted MaxSat-solver.

More specifically, GetSug is given in Fig. 13. It works as follows. It first identifies
the required attributes A′ and pattern P ′[A] by applying derivation rules in C (lines 1-
4). It then converts P ′ to a CNF Φ′, along the same line as procedures Instantiation
and ConvertToCNF given earlier (line 5). Since Φ′ may have conflicts with the Φ(Se),
it invokes a weighted MAXSAT-solver to minimally revise Φ′ such that Φ′ ∪ Φ(Se) is
satisfiable (lines 6-7). It then finds the subset of C corresponding to the revised Φ′,
which has no conflicts with Se (lines 8-12). It also derives a set A of attributes from the
subset of C (line 12; see Example 13). Finally, it returns A (line 13). Recall that V(A) is
computed by procedure DeriveVR given earlier. Note that the input to the MaxSat-solver
is no larger than |R|2|It|2. Moreover, there are efficient MaxSat-solvers available, with
a reasonable approximation bound [Selman and Kautz 2004].
Correctness. Algorithm Suggest guarantees to generate a suggestion (A,V(A)). In-
deed, (1) the clique C′ revised by MaxSat has no conflicts with Se, and thus C′ and Se

warrant to have a valid completion Ict . Let tc = LST(Ict). If V(A) are validated for A,
then tc must be the true value T(Se) of Se, since tc[B] = VB remains unchanged for
all valid completions of Se, and tc[A′] is uniquely determined by tc[A] and VB by the
construction. (2) All possible true values for A from their active domains are already
included in V(A).

ACM Journal of Data and Information Quality, Vol. V, No. N, Article A, Publication date: January YYYY.

Conflict Resolution with Data Currency and Consistency A:31

6. EXPERIMENTAL STUDY
We conducted experiments using both real-life and synthetic data. We evaluated the
accuracy and scalability of (1) IsValid for validating a specification, (2) DeduceOrder for
deducing true values, (3) Suggest for computing suggestions, and (4) the overall perfor-
mance of conflict resolution supporting (1-3) above. Note that IsValid and DeduceOrder
are useful in their own right, since users may want to check their specifications and
infer true values outside the interaction framework.
Experimental data. We used two real-life datasets (NBA and CAREER) and synthetic
data (Person). Constraints were discovered semi-automatically with the help of pro-
filing algorithms [Chiang and Miller 2008; Calders et al. 2006] (see details below).
Timestamps for the datasets were either missing (for CAREER and Person) or incom-
plete (NBA). We assumed empty currency orders in all the experiments even when
partial timestamps were given. The true values of these entities were first selected
using (incomplete) timestamps, and then extracted and examined manually. Also, the
available (incomplete) timestamps were used for designing currency constraints.
NBA player statistics. This dataset was retrieved from the following sites: (1)
http://databasebasketball.com/, (2) http://www.infochimps.com/marketplace, and (3)
http://en.wikipedia.org/wiki/List of National Basketball Association arenas. It con-
sists of three tables: (a) Player (from sources 1 and 3) contains information about play-
ers, identified by player id (pid). (b) Stat (from 1) includes the statistics of these players
from the 2005/2006 season to the 2010/2011 season. (c) Arenas (from 3) records the
historical team names and arenas of each team.

We created a table, referred to as NBA, by first joining Player and Stat via equi-join
on the pid attribute, and then joining Arenas via equi-join on the team attribute. The
NBA table consists of 19573 tuples for 760 entities (i.e., players). Its schema is (pid,
name, true name, team, league, tname, points, poss, allpoints, min, arena, opened, capacity,
city). When producing the NBA table we took care of the attributes containing multiple
values for a player, e.g., multiple teams for the same player, and multiple teams for one
arena. We ensure that only one attribute value (e.g., team) appears in any tuple. Only
data from (1) and (3) carries (partial) timestamps. Therefore, the true values of entities
in the NBA table cannot be directly derived when putting (1), (2) and (3) together.

The number of tuples pertaining to an entity ranges from 2 to 136, about 27 in av-
erage. We consider entity instances, i.e., tuples referring to the same entity, which are
much smaller than a database.

We found 54 currency constraints: 15 for team names (tname) as shown by ϕ1 below;
32 for arena, similar to ϕ2; and 4 (resp. 3) for attribute allpoints that were scored since
2005 (resp. arena), similar to ϕ3 (resp. ϕ4), where B ranges over points, poss, min and
tname (resp. opened, capacity and years). We deduced 58 constant CFDs, e.g., ψ1 below.

ϕ1: ∀t1, t2 (t1[tname] = “New Orleans Jazz” ∧ t2[tname] = “Utah Jazz”→ t1 ≺tname t2);
ϕ2: ∀t1, t2 (t1[arena] = “Long Beach Arena” ∧ t2[arena] = “Staples Center”→ t1 ≺arena t2);
ϕ3: ∀t1, t2 (t1[allpoints] < t2[allpoints] ∧ t1[B] 6= t2[B]→ t1 ≺B t2)
ϕ4: ∀t1, t2 (t1 ≺arena t2 ∧ t1[B] 6= t2[B]→ t1 ≺B t2)
ψ1: ∀t (t[arena] = “United Center”→ t[city] = “Chicago, Illinois”)

(2) CAREER. This data set was retrieved as is from the following source:
http://www.cs.purdue.edu/commugrate/data/citeseer. Its schema is (first name, last
name, affiliation, city, country). We chose 65 persons from the dataset, and for each one,
we collected all of his/her publications, one tuple for each. No reliable timestamps were
available for this dataset. The number of tuples pertaining to an entity ranges from 2
to 175, about 32 in average.

ACM Journal of Data and Information Quality, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 W. Fan, F. Geerts, N. Tang & W. Yu

We derived 503 currency constraints: if two papers A and B are by the same person
and A cites B, then the affiliation and address (city and country) used in paper A are
more current than those used in paper B. We also found a single CFD of the form:
∀t (t[affiliation] = c1 → t[city] = c2 ∧ t[country] = c3), with 347 patterns with different
constants (c1, c2, c3).

The constraints for each dataset (NBA and CAREER) have essentially the same form,
and only differ in their constants. Indeed, we find that the number of constraints with
different forms is rather small in practice.
(3) Person data. The synthetic data adheres to the schema given in Table 2. We found
983 currency constraints (of the same form but with distinct constant values for status,
job and kid) and a single CFD ∀t (t[AC] = c1 → t[city] = c2) with 1000 patterns (c1, c2)
(counted as distinct constant CFDs), similar to those in Table 3. The data generator
used two parameters: n denotes the number of entities, and s is the size of entity in-
stances (the number of tuples pertaining to an entity). For each entity, it first generated
a true value tc, and then produced a set E of tuples that have conflicts but do not vio-
late the currency constraints; we treated E \ {tc} as the entity instance. We generated
n = 10k entities, with s from 1 to 10k. We used empty currency orders.
Discovery of currency constraints. For each dataset, the currency constraints were dis-
covered in the following 3 steps. We first sampled a small number of tuples from each
dataset, and manually tagged the currency orders of values in the sampled data. Sec-
ond, along the same line of profiling algorithms [Chiang and Miller 2008; Calders et al.
2006], candidate constraints were deduced from the sampled data. Finally, we manu-
ally examined these candidates to find common patterns that may hold on the rest
of dataset. Following the common patterns, more constraints could be discovered by
propagating these patterns with values from the rest of the dataset.
Algorithms. We implemented the following algorithms in Python: (a) IsValid
(Section 5.1): it calls MiniSat [Giunchiglia and Tacchella 2004] as the SAT-
solver; (b) DeduceOrder and NaiveDeduce, where NaiveDeduce repeatedly invokes Min-
iSat [Giunchiglia and Tacchella 2004], as described in Section 5.2; and (c) Suggest: it
uses MaxClique [Feige 2005] to find a maximal clique, and MaxSat-solver [Selman and
Kautz 2004] to derive a suggestion (Section 5.3). We simulated user interactions by
providing true values for suggested attributes, some with new values, i.e., values not
in the active domain. We also implemented (d) Pick, a traditional method that ran-
domly takes a value [Bleiholder and Naumann 2008] (a.k.a. “roll the dice” strategy).
Pick works as follows. Instead of picking a value from all possible values, it first gen-
erates a set of candidate current values as given by the currency constraints, i.e., the
values that are not less current than any other value. It then randomly picks a value
from the candidate current values, as the true value.
Accuracy. To measure the quality of suggestions, we used the notion of F-measure
(http://en.wikipedia.org/wiki/F-measure):

F-measure = 2 · (recall · precision)/(recall + precision).
Here precision is the ratio of the number of values correctly deduced to the total number
of values deduced; and recall is the ratio of the number of values correctly deduced to
the total number of attributes with conflicts or stale values.
Implementation. Our algorithms were implemented in Python. All experiments were
conducted on a Linux machine with a 3.0GHz Intel CPU and 4GB of Memory. Each
experiment was repeated 5 times, and the average is reported here.

ACM Journal of Data and Information Quality, Vol. V, No. N, Article A, Publication date: January YYYY.

Conflict Resolution with Data Currency and Consistency A:33

 0

 1000

 2000

 3000

 4000

 5000

[1,27]
[28,54]

[55,81]
[82,108]

[109,135]

[1,2000]

[2001,4000]

[4001,6000]

[6001,8000]

[8001,10000]

el
ap

se
d
 t

im
e

(m
se

c) NBA: (|Σ| = 54, (|Γ| = 58)

Person (|Σ| = 983, (|Γ| = 1000)

(a) Validity (#-tuples)

 10

 100

 1000

 10000

 100000

[1,27]
[28,54]

[55,81]
[82,108]

[109,135]

[1,2000]

[2001,4000]

[4001,6000]

[6001,8000]

[8001,10000]

el
ap

se
d
 t

im
e

(m
se

c) NBA-DeduceOrder

NBA-NaiveDeduce

Person-DeduceOrder

(b) Deducing true values

 0

 100

 200

 300

 400

 500

[1,27]
[28,54]

[55,81]
[82,108]

[109,135]

el
ap

se
d
 t

im
e

(m
se

c) Suggest
DeduceOrder

Validity

(c) NBA: Overall time

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

[1,2000]

[2001,4000]

[4001,6000]

[6001,8000]

[8001,10000]

el
ap

se
d
 t

im
e

(m
se

c) Suggest
DeduceOrder

Validity

(d) Person: Overall time

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2

e
n
ti

ti
e
s
%

 o
f

tr
u
e
 v

a
lu

e
s

Σ+Γ

(e) NBA: #-interactions

 0

 0.2

 0.4

 0.6

 0.8

 1

0.2 0.4 0.6 0.8 1

F
-m

e
a
s
u

re

0-interaction

1-interaction

2-interaction

Pick

(f) NBA: varying |Σ|+ |Γ|

 0

 0.2

 0.4

 0.6

 0.8

 1

0.2 0.4 0.6 0.8 1

F
-m

e
a
s
u

re

0-interaction

1-interaction

2-interaction

(g) NBA: varying |Σ|

 0

 0.2

 0.4

 0.6

 0.8

 1

0.2 0.4 0.6 0.8 1

F
-m

e
a
s
u

re

0-interaction

1-interaction

2-interaction

(h) NBA: varying |Γ|

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2

e
n
ti

ti
e
s
%

 o
f

tr
u
e
 v

a
lu

e
s

Σ+Γ

(i) CAREER: #-interactions

 0

 0.2

 0.4

 0.6

 0.8

 1

0.2 0.4 0.6 0.8 1

F
-m

e
a
s
u

re

0-interaction

1-interaction

2-interaction

Pick

(j) CAREER: varying |Σ|+ |Γ|

 0

 0.2

 0.4

 0.6

 0.8

 1

0.2 0.4 0.6 0.8 1

F
-m

e
a
s
u

re

0-interaction

1-interaction

(k) CAREER: varying |Σ|

 0

 0.2

 0.4

 0.6

 0.8

 1

0.2 0.4 0.6 0.8 1

F
-m

e
a
s
u

re

0-interaction

1-interaction

2-interaction

(l) CAREER: varying |Γ|

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2 3

e
n
ti

ti
e
s
%

 o
f

tr
u
e
 v

a
lu

e
s

Σ+Γ

(m) Person: #-interaction

 0

 0.2

 0.4

 0.6

 0.8

 1

0.2 0.4 0.6 0.8 1

F
-m

e
a
s
u

re

0-interaction

1-interaction

2-interaction

3-interaction

Pick

(n) Person: varying |Σ|+ |Γ|

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

F
-m

e
a
s
u

re

0-interaction

1-interaction

2-interaction

3-interaction

(o) Person: varying |Σ|

 0

 0.2

 0.4

 0.6

 0.8

 1

0.2 0.4 0.6 0.8 1

F
-m

e
a
s
u

re
0-interaction

1-interaction

2-interaction

(p) Person: varying |Γ|
Fig. 14. Experimental results

Experimental results. We next present our findings. Due to the small size of the
CAREER data for each entity, experiments conducted on it took typically less than 10
milliseconds (ms). Hence we do not report its result in the efficiency study.
Exp-1: Validity checking. We first evaluated the scalability of IsValid. The average
time taken by entity instances of various sizes is reported in Fig. 14(a), where the lower
x-axis shows the sizes of NBA, and the upper x-axis is for Person data. The results show
that IsValid suffices to validate specifications of a reasonably large size. For example,
it took 220 ms for NBA entity instances of 109-135 tuples and 112 constraints, with 14
attributes in each tuple. For Person, it took an average of 4.7 seconds on entities of 8k-
10k tuples and 1983 constraints. We also find IsValid accurate: specifications reported
(in)valid are indeed (in)valid.

ACM Journal of Data and Information Quality, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 W. Fan, F. Geerts, N. Tang & W. Yu

Exp-2: Deducing true values. We next evaluated the performance of algorithms
DeduceOrder and NaiveDeduce. The results on both NBA and Person data are reported
in Fig. 14(b), which tell us the following: (a) DeduceOrder scales well with the size of
entity instances, and (b) DeduceOrder substantially outperforms NaiveDeduce on both
datasets, for reasons given in Section 5.2. Indeed, DeduceOrder took 51 ms on NBA entity
instances with 109-135 tuples, and 914 ms on Person entities of 8k-10k tuples; in con-
trast, NaiveDeduce spent 13585 ms and over 20 minutes (hence not shown in Fig. 14(b))
on the same datasets, respectively.

We also find that DeduceOrder derived as many true values as NaiveDeduce on both
datasets (not shown). This tells us that DeduceOrder can efficiently deduce true values
on large entity instances without compromising the accuracy of the true values found.

Furthermore, we also learned from our experiments that true values were often
scattered across multiple tuples. For example, for the NBA data, only 31% of true values
were deduced from a single tuple.
Exp-3: Suggestions for user interactions. We evaluated the accuracy of sugges-
tions generated from currency constraints Σ and CFDs Γ put together. The results on
NBA, CAREER and Person are given in Figures 14(e), 14(i) and 14(m), respectively, where
the x-axis indicates the rounds of interactions, and the y-axis is the percentage of true
attribute values deduced. When choosing a fraction of constrains in this experiment,
we used random selection. As in all the experiments of this paper, we report the aver-
age result over 5 runs of the experiment.

The results tell us the following. (a) Few rounds of interactions are needed to find all
the true attribute values for an entity: at most 2, 2 and 3 rounds for NBA, CAREER and
Person data, respectively. (b) A large part of true values can be automatically deduced
by means of currency and consistency inferences: 35%, 78% and 22% of true values
are identified from Σ + Γ without user interaction, as indicated by the 0-interaction in
Figures 14(e), 14(i) and 14(m), respectively.
Impact of |Σ| and |Γ|. To be more precise when evaluating the accuracy, we use F-
measure, which combines precision and recall, and take the cases of using |Γ| only or
|Σ| only into consideration. Figures 14(f)–14(h), 14(j)–14(l) and 14(n)–14(p) show the
results for NBA, CAREER and Person, respectively, when varying both |Σ| and |Γ|, |Σ|
only, and varying |Γ| alone, respectively. The x-axis shows the percentage of Σ or Γ
used, and the y-axis shows the corresponding F-measure values.

These results tell us the following. (a) As shown in Figures 14(f), 14(j) and 14(n), our
method substantially outperforms the traditional method Pick, by 201% in average on
all datasets, even when we favor Pick by allowing it to capitalize on currency orders.
This verifies that data currency and consistency can significantly improve the accuracy
of conflict resolution. (b) When Σ and Γ are taken together, the F-measure value is up to
0.930 for NBA (Fig. 14(f), the top right point), 0.958 for CAREER (Fig. 14(j)), and 0.903
for Person (Fig. 14(n)), in contrast to 0.830 in Fig. 14(g), 0.907 in Fig. 14(k), and 0.826
in Fig. 14(o), respectively, when Σ is used alone, and as opposed to 0.210 in Fig. 14(h),
0.741 in Fig. 14(l), and 0.234 in Fig. 14(p), respectively, with Γ only. These further
verify that the inferences of data currency and consistency should be unified instead
of taken separately. (c) The more currency constraints and/or CFDs are available, the
higher the F-measure is, as expected. (d) The two curves for the 2- and 1-interaction
overlap in Figures 14(f)–14(h) for NBA, 2- and 1-interaction in Figures 14(j)–14(l) for
CAREER, and 3- and 2-interaction in Figures 14(n)–14(p) for Person. These indicate that
the user interactions are needed to provide true values for those attributes that we do
not have enough information to deduce their true values.

ACM Journal of Data and Information Quality, Vol. V, No. N, Article A, Publication date: January YYYY.

Conflict Resolution with Data Currency and Consistency A:35

Exp-4: Efficiency. The overall performance for resolving conflicts in the NBA
(resp. Person) data is reported in Fig. 14(c) (resp. Fig. 14(d)). Each bar is divided into
the elapsed time taken by (a) validity checking, (b) true value deducing, and (c) sugges-
tion generating, including computing maximal cliques and running MaxSat. The result
shows that conflict resolution can be conducted efficiently in practice, e.g., each round
of interactions for NBA took 380 ms. Here validating specifications takes most time,
dominated by the cost of SAT-solver, while deducing true values takes the least time.
Summary. From the experimental results we find the following. (a) Conflict resolu-
tion by reasoning about data currency and consistency substantially outperforms the
traditional method Pick, by 201%. (b) It is more effective to unify the inferences of data
currency and consistency than treating them independently. Indeed, when Σ and Γ are
taken together, the F-measure improves over Σ only and Γ only by 11% and 236%, re-
spectively. (c) Our conflict resolution method is efficient: it takes less than 0.5 second
on the real-life datasets even with interactions. (d) Our method scales well with the
size of entities and the number of constraints. Indeed, it takes an average of 7 seconds
to resolve conflicts in Person entity instances of 8k-10k tuples, with 1983 constraints.
(e) At most 2-3 rounds of interactions are needed for all datasets.

7. CONCLUSION
We have proposed a model for resolving conflicts in entity instances, based on both data
currency and data consistency. We have also identified several problems fundamental
to conflict resolution, and established their complexity. Despite the inherent complex-
ity of these problems, we have introduced a framework for conflict resolution, along
with practical algorithms supporting the framework. Our experimental study has ver-
ified that our methods are effective and efficient, using real-life and synthetic data. We
contend that these yield a promising approach to resolving conflicts in practice.

Several topics are targeted for future work. We are now exploring efficient algo-
rithms with better performance guarantees for generating suggestions, and testing
them with data in various domains. Another topic concerns the discovery of data qual-
ity rules. Prior work on discovery of such rules [Chiang and Miller 2008] shows that a
large number of high-quality rules can be identified from possibly dirty data. A third
topic is to repair data by using currency constraints and partial temporal orders. This
is more challenging than conflict resolution, since a database to be repaired is typically
much larger than entity instances. Finally, a challenging topic is to extend our frame-
work by allowing users to edit constraints, and by soliciting other information (such
as semantic dependencies specifying how attributes are correlated) as users’ feedback
when the users do not have sufficient currency knowledge about their data.

Acknowledgment. Fan and Yu are supported in part by 973 Programs 2012CB316200
and 2014CB340302, NSFC 61133002, Guangdong Innovative Research Team Program
2011D005, Shenzhen Peacock Program 1105100030834361, and EPSRC EP/J015377/1.

REFERENCES
Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. 1999. Consistent Query Answers in Inconsistent

Databases. In PODS.
Leopoldo Bertossi. 2011. Database Repairing and Consistent Query Answering. Morgan & Claypool Publish-

ers.
Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh (Eds.). 2009. Handbook of Satisfiability.

Frontiers in Artificial Intelligence and Applications, Vol. 185. IOS Press.
Jens Bleiholder and Felix Naumann. 2008. Data fusion. ACM Comput. Surv. 41, 1 (2008).

ACM Journal of Data and Information Quality, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 W. Fan, F. Geerts, N. Tang & W. Yu

Toon Calders, Bart Goethals, and Szymon Jaroszewicz. 2006. Mining rank-correlated sets of numerical at-
tributes. In KDD.

Fei Chiang and Renee Miller. 2008. Discovering Data Quality Rules. In VLDB.
Jan Chomicki and David Toman. 2005. Time in Database Systems. In Handbook of Temporal Reasoning in

Artificial Intelligence. Elsevier.
Gao Cong, Wenfei Fan, Floris Geerts, Xibei Jia, and Shuai Ma. 2007. Improving Data Quality: Consistency

and Accuracy. In VLDB.
Michele Dallachiesa, Amr Ebaid, Ahmed Eldawy, Ahmed K. Elmagarmid, Ihab F. Ilyas, Mourad Ouzzani,

and Nan Tang. 2013. NADEEF: a commodity data cleaning system. In SIGMOD.
Umeshwar Dayal. 1983. Processing Queries Over Generalization Hierarchies in a Multidatabase System.

In VLDB.
Xin Dong, Laure Berti-Equille, and Divesh Srivastava. 2009. Truth Discovery and Copying Detection in a

Dynamic World. In VLDB.
Xin Dong and Felix Naumann. 2009. Data fusion - Resolving Data Conflicts for Integration. In VLDB.
W. W. Eckerson. 2002. Data quality and the bottom line: Achieving business success through a commitment

to high quality data. The Data Warehousing Institute (2002).
Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. 2007. Duplicate Record Detection:

A Survey. TKDE 19, 1 (2007).
Wenfei Fan and Floris Geerts. 2012. Foundations of Data Quality Management. Morgan & Claypool Pub-

lishers.
Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. 2008. Conditional Functional Depen-

dencies for Capturing Data Inconsistencies. TODS 33, 1 (2008).
W. Fan, F. Geerts, J. Li, and M. Xiong. 2011. Discovering Conditional Functional Dependencies. TKDE 23, 5

(2011), 683–698.
Wenfei Fan, Floris Geerts, Ma Shuai, Nan Tang, and Wenyuan Yu. 2013. Inferring Data Currency and

Consistency for Conflict Resolution. In ICDE.
Wenfei Fan, Floris Geerts, and Jef Wijsen. 2012. Determining the currency of data. TODS 37, 4 (2012).
Uriel Feige. 2005. Approximating Maximum Clique by Removing Subgraphs. SIAM J. Discret. Math. 18

(February 2005). Issue 2.
Alban Galland, Serge Abiteboul, Amélie Marian, and Pierre Senellart. 2010. Corroborating information from

disagreeing views. In WSDM.
Enrico Giunchiglia and Armando Tacchella (Eds.). 2004. Theory and Applications of Satisfiability Testing.
Bart Goethals. 2003. Survey on Frequent Pattern Mining. Technical Report. Helsinki Institute for Informa-

tion Technology.
Rob Goldring. 1995. Update Replication: What Every Designer Should Know. In InfoDB, Vol.9, No.2. 17–24.
Sergio Greco, Cristina Sirangelo, Irina Trubitsyna, and Ester Zumpano. 2003. Preferred Repairs for Incon-

sistent Databases. In IDEAS.
Pei Li, Xin Dong, Andrea Maurino, and Divesh Srivastava. 2011. Linking Temporal Records. PVLDB (2011).
Amihai Motro and Philipp Anokhin. 2006. Fusionplex: resolution of data inconsistencies in the integration

of heterogeneous information sources. Information Fusion 7, 2 (2006).
Christos H Papadimitriou. 1994. Computational Complexity. Addison Wesley.
Bart Selman and Henry Kautz. 2004. Walksat Home Page. (2004).

http://www.cs.washington.edu/homes/kautz/walksat/.
Larry J. Stockmeyer. 1976. The Polynomial-Time Hierarchy. Theore. Comput. Sci 3, 1 (1976).
Jennifer Widom. 2005. Trio: A System for Integrated Management of Data, Accuracy, and Lineage. In CIDR.
Mohamed Yakout, Ahmed K. Elmagarmid, Jennifer Neville, and Mourad Ouzzani. 2010. GDR: a system for

guided data repair. In SIGMOD.
Xiaoxin Yin, Jiawei Han, and Philip S. Yu. 2008. Truth Discovery with Multiple Conflicting Information

Providers on the Web. TKDE 20, 6 (2008).
Haopeng Zhang, Yanlei Diao, and Neil Immerman. 2010. Recognizing Patterns in Streams with Imprecise

Timestamps. In VLDB.

ACM Journal of Data and Information Quality, Vol. V, No. N, Article A, Publication date: January YYYY.

