
ANMAT: Automatic Knowledge Discovery and Error
Detection through Pattern Functional Dependencies

Abdulhakim Qahtan

QCRI, HBKU

aqahtan@hbku.edu.qa

Nan Tang

QCRI, HBKU

ntang@hbku.edu.qa

Mourad Ouzzani

QCRI, HBKU

mouzzani@hbku.edu.qa

Yang Cao

University of Edinburgh

yang.cao@ed.ac.uk

Michael Stonebraker

CSAIL, MIT

stonebraker@csail.mit.edu

ABSTRACT
Knowledge discovery is critical to successful data analytics.

We propose a new type of meta-knowledge, namely pattern

functional dependencies (PFDs), that combine patterns (or

regex-like rules) and integrity constraints (ICs) to model the

dependencies (or meta-knowledge) between partial values

(or patterns) across different attributes in a table. PFDs go

beyond the classical functional dependencies and their ex-

tensions. For instance, in an employee table, ID “F-9-107”,
“F” determines the financial department, and “9” determines

one’s grade. Moreover, a key application of PFDs is to use

them to identify erroneous data; tuples that violate some

PFDs. In this demonstration, attendees will experience the

following features: PFD discovery – automatically discover

PFDs from (dirty) data in different domains; and Error detec-
tion with PFDs – we will show errors that are detected by

PFDs but cannot be captured by existing approaches.

1 INTRODUCTION
Patterns (or regex-like rules) arewidely used to discovermeta-

knowledge in a given domain, e.g., a Year column should

contain only four digits. In addition, integrity constraints (ICs)
have been extensively studied to model data dependencies

across columns, e.g., Postal Code uniquely determines City,
which can then be used for error detection, query optimiza-

tion, and data modeling, among others. Our key observation

is that by relaxing the limitation of previous ICs, namely the

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SIGMOD’19, June 30 - July 5, 2019, Amsterdam, The Netherlands
© 2019 Association for Computing Machinery.

ACM ISBN 123-4-5678-9876-7/18/06. . . $15.00

https://doi.org/10.xxx/123456.123456

name gender
r1: John Charles M
r2: John Bosco M
r3: Susan Orlean F
r4: Susan Boyle M

F

Table 1: D1: A Name Table

zip city
s1: 90001 Los Angeles
s2: 90002 Los Angeles
s3: 90003 Los Angeles
s4: 90004 New York

Los Angeles

Table 2: D2: A Zip Table
need to operate on entire attribute values, we can specify

a new type of data dependencies that can capture partial

attribute values that follow some patterns.

Consider two datasets D1 and D2, for two tables Name
and Zip, respectively. Table Name (Table 1) is defined over

the schema (name, gender), and table Zip (Table 2) is defined
over the schema (zip, city). Erroneous cells, r4[gender] in D1

and s4[city] in D2, are highlighted. Their correct values (or

ground truth) are F and Los Angeles, which are also shown

in the tables, below the erroneous values.

Our Methodology. Our proposed ICs are based on patterns

of partial attribute values, as shown below:

λ1 : Name ([name = John\ \A∗] → [gender = M])

λ2 : Name ([name = Susan\ \A∗] → [gender = F])
λ3 : Zip ([zip = 900\D{2}] → [city = Los Angeles])

PFDs

where λ1/λ2 says that if someone’s first name is John/Susan,
then the gender is M/F (\A matches any alphabet and \A∗
matches any string, which will be defined in Section 2); and

λ3 says that if a five-digit zip code starts by 900, then the

city is Los Angeles (\D{2} matches any two consecutive

digits). Clearly, λ2 can detect error r4[gender] in D1 and λ3
can detect error s4[city] in D2.

Alternatively, consider two other constraints as follows:

λ4 : Name ([name = \LU\LL∗\ \A∗] → [gender])
λ5 : Zip ([zip = \D{3} \D{2}] → [city])

PFDs

where λ4 says that one’s first name uniquely determines one’s

gender for table Name (\LU matches any upper case letter

and \LL∗ matches any consecutive lower case letters); and

λ5 states that the first 3 digits of a 5-digit zip code determines

1

https://doi.org/10.xxx/123456.123456

the city for table Zip. These two PFDs (λ4 and λ5) are defined
over two tuples: for example, two tuples match the LHSof

λ4, if they both satisfy the pattern \LU\LL∗\ \A∗, and their

first names are the same, which is enforced by \LU\LL∗\ .

λ4 can detect the error r4[gender] by comparing tuples r3
and r4: r3 and r4 have the same first name Susan but differ-

ent gender, which identifies a violation consisting of four

cells (r3[name], r3[gender], r4[name], r4[gender]). Similarly,

λ5 can detect the error s4[city] by comparing s4 with either

s1, s2, or s3.

The Limitations of the Prior Art. The fundamental lim-

itation of previous ICs (e.g., FDs [?] and CFDs [?]) is that
they enforce data dependencies using the entire attribute

values. Consequently, they cannot specify the fine-grained

semantics found in partial attribute values.

Our Proposed Demonstration. This demo implements

Anmat
1
, a system to discover PFDs directly from dirty data,

and to use them for error detection as a key application for

such ICs. The audience will be able to see PFDs discovered

from diverse domains. It will also see how new (i.e., cannot
be detected by other ICs) data errors can be detected.

2 PATTERN FUNCTIONAL DEPENDENCIES
Before demonstrating the discovery of PFDs, we need to for-

mally define them. We first discuss the (regex-like) patterns

that we use for modeling the partial attribute values. While

the class of general regular expressions can be used, it is

actually too large for our purpose. In addition, it complicates

the problems (i.e., high time complexity) of discovering and

applying PFDs, e.g., checking the equivalence of two regular

expressions is PSPACE-complete [?]. Fortunately, for the pur-
pose of data cleaning, simple patterns are typically sufficient,

as it has been shown in recent works [? ?].
We use the generalization tree, which is a tree defined over

an alphabet Σ, where each leaf node is a character in Σ and

each intermediate node is a generalization of its child nodes,

depicted in Figure 1. It contains upper case letters [A-Z],
lower case letters [a-z], digits [0-9], and other symbols. Here,

ϵ represent the empty string.

Patterns. A pattern P is a sequence of characters defined

over the generalization tree. For stringsα and β ,α {N }means

N repetitions of α , α & β is the logical and of α and β , α+
means one-or-more repetitions, and the Kleene star operator

α∗ denotes zero-or-more repetitions. We do not consider

recursive patterns such as (α+)∗.
Employing a simple definition of patterns, in contrast to

complicated regular expressions, has many benefits as they

are: (1) easy to specify, (2) easy to discover, (3) easy to apply,

(4) easy to reason about, and (5) most importantly, enough

1
From the Arabic word, patterns.

All[A]

Upper[LU]

22

Lower[LL]

99

Digit[D]

gg

Symbol[S]

ll

A

::

· · ·

OO

Z

dd

a

;;

· · ·

OO

z

ff

0

==

· · ·

OO

9

aa

ϵ

;; OO

· · ·

dd

Figure 1: A Generalization Tree

to detect most errors that more general regular expressions

can capture in practice.

We say that a string s matches (or satisfies) a pattern P ,
denoted by s 7→ P , if s is evaluated to be true by P .
Given two patterns P and P ′

, we say that P is contained
by P ′

, denoted by P ⊆ P ′
, iff for any string s , s 7→ P implies

s 7→ P ′
. In other words, P ′

is more general than P .

Example 1: [Patterns.] Consider zip code 90001 and two

patterns P1 = \D{5} and P2 = \D∗. We have 90001 7→ P1,
90001 7→ P2, and P1 ⊆ P2. 2

Constrained Patterns.A constrained patternQ is a concate-

nation of several patterns where at least one is constrained (or
annotated) by the symbol “X ”. We call Q the embedded pat-
tern of the constrained patternQ . Given a string s , s matches
a constrained pattern Q , denoted by s 7→ Q , iff s 7→ Q .

Given two constrained patterns Q and Q ′
, we say that Q

is a restricted pattern of Q ′
, denoted by Q ⊆ Q ′

, if for any

two strings s, s ′, s ≡Q s ′ implies s ≡Q ′ s ′.

Example 2: [Constrained Patterns.] One example con-

strained pattern is Q1 = \LU\LL∗\ \A∗ from the constraint

λ4 presented in the introduction. It is used on the name at-
tribute to enforce the matching over the first name. Another

example is Q2 = \LU\LL∗\ \A∗ \LU\LL∗, which can be

used to enforce the matching over both the first name and

the last name, but with an arbitrary number of middle names.

The embedded patterns of Q1 and Q2 are \LU\LL∗\ \A∗
and \LU\LL∗\ \A∗ \LU\LL∗, respectively. Obviously, Q2 ⊆

Q1, i.e., pattern Q2 is contained by Q1, and Q2 ⊆ Q1, i.e., Q2

is a restricted constrained pattern of Q1.

Consider two names in Table 1, r1[name] = John Charles
and r2[name] = John Bosco. We have r1[name] 7→ Q1,

r2[name] 7→ Q1. Moreover, we have r1[name] ≡Q1

r2[name],

because r1[name](Q1) = {John}, r2[name](Q1) = {John},
and r1[name](Q1) ∩ r2[name](Q1) = {John} , ∅. 2

Pattern Functional Dependencies (PFDs). A PFD ψ de-

fined over schema R is a pair R(X → Y ,Tp), where:

(1) X and Y are sets of attributes from R,

(2) X → Y is a standard FD, called an embedded FD, and

(3) Tp is a tableau with all attributes in X and Y , where for
attribute A in X or Y and each tuple tp ∈ Tp , tp [A] is either
a constrained pattern that matches values in dom(A), or an
unnamed variable ‘⊥’ that serves as a wildcard.

Please refer to λ1–λ5 in Section 1 for PFD examples.

2

3 DISCOVERY AND ERROR DETECTION

PFD Discovery. The PFD Discovery algorithm is shown in

Figure 2. Given a table and a function to decide whether a set

of value pairs forms a PFD as input, it outputs a set of PFDs.

The algorithm first profiles the data to prune attributes for

which PFDs cannot be found (line 1). For example, we drop all

columns with pure numerical values. We then assume that

all column pair combinations are potential dependencies for

the PFDs. Then for each candidate dependency, the algorithm

checks whether there are patterns that can be used to form

a PFD (lines 3–14). The same process can be used to work

either on tokens (obtained using the function Tokenize) or
n-grams (using the function NGrams) (lines 6,7). Then for

each token or n-gram of t[A] (line 6), the algorithm inserts

a key-value pair for the token or n-gram into an inverted

list, where the key is the token or n-gram of t[A], and the

value is a triple consisting of tuple id, position of the token or

n-gram in t[A], and t[B] (line 8). Afterwards, it will scan all

entries in the inverted list (line 10), and decide which entry

can form a meaningful pattern tuple based on a predefined

function (lines 11–12).

Error Detection using PFDs. Given a PFD ψ defined over

schema R as (A → B, tp), we consider two cases for error

detection: constant PFDs, i.e., the constrained parts of the

tableau in the B attribute contains only constants, and vari-

able PFDs, i.e., the value related to B attribute in the tableau

contains a wildcard. For each constant PFD, we simply do

the following scan the table and check, for each tuple t , if
t[A] 7→ tp [A] and t[B] , tp [B], then there is a violation. In

this case, if we assume that the LHS value is correct then

the RHS could repaired by changing it to tp [B]. For better
performance, we create an index supporting regular expres-

sions for each column present on the LHS of the PFDs. In this

case, the search for violations will be limited to those tuples

that match tp [A]. For variable PFDs, i.e., tp [B] =⊥, the brute
force approach would be to enumerate all possible tuple pairs

(ti , tj) and check for violations, i.e., ti [A] = tj [A] = tp [A] and
ti [B] , tj [B]. Again, we create an index supporting regular

expressions for each column present on the LHS of the PFDs

to limit the check to only tuples matching tp [A]. However,
this is still quadratic. The quadratic time complexity can be

avoided using blocking [?].

4 DEMONSTRATION OVERVIEW

Datasets. We will use real-world datasets, from data.gov

and ChEMBL (https://www.ebi.ac.uk/chembl/downloads), as

well as anonymized private datasets from the MIT data ware-

house and local companies in Qatar. The audience is also

encouraged to bring its own data and test it using Anmat.

Algorithm Discover PFDs
Input: a relational table T,

a function f and a minimum coverage threshold
γ to make PFD decisions

Output: a set Ψ of PFDs

1. Φ := CandidateDependecies(T)
2. Ψ := ∅ /* the set of discovered PFDs */
3. for each FD φ : (A → B) ∈ Φ do
4. H := ∅ /* a hash-based inverted list */
5. for each tuple t ∈ T do
6. for each s ∈ Tokenize(t[A])|NGrams(t[A]) do
7. for each u ∈ Tokenize(t[B])|NGrams(t[B]) do
8. H.insert(s, (id(t),poss ,u,posu))
9. Tp = ∅ for a new PFD ψ : (A → B,Tp)
10. for each entry h ∈ H do
11. if f (h) is true then
12. add a tuple tp to Tp, w.r.t. entry h
13. if coverage(Tp) ≥ γ then
14. Ψ := Ψ ∪ {ψ }
15.return Ψ

Figure 2: Algorithm for Discovering PFDs

Parameter Setting. Anmat accepts two user input param-

eters, namely: (1) the minimum coverage and (2) the ratio of
allowed violations. The minimum coverage represents the ra-

tio of the records that participate in a PFD to the total number

of records in the attribute. The participation is determined

by checking all the records containing at least one of the

patterns that appear in the tuples of the tableau. Since we

assume the data is dirty, we tolerate a specific ratio of viola-

tions, which are reported as errors. The minimum coverage

and the allowed violations give the user the ability to control

the number of discovered dependencies. Both parameters

represent a trade-off between discovering more dependen-

cies and reducing the rate of false positives. For example,

using smaller percentage for the coverage will allow to re-

port more dependencies but it will report more dependencies

which are false positives.

System Interface. We have implemented Anmat with two

interfaces for different users: a GUI for lay users as shown in

Figure 3, and a Jupyter Notebook for programmers. We will

mainly demonstrate the GUI.

Dataset Specification. The user of Anmat will select the

project and the dataset to work on from drop-downmenus as

shown at the top of Figure 3. New users can create their own

projects and upload the datasets that need to be processed.

After uploading the dataset and setting the minimum cov-

erage and allowed violations, the system will automatically

profile the dataset, extract the PFDs, and store the results in

a MongoDB database.

3

https://www.ebi.ac.uk/chembl/downloads

Figure 3: Profiling and Listing the Patterns in the Data

Figure 4: Displaying Discovered PFDs

PFD Discovery. An example of the extracted patterns is

shown in Figure 3. The set of patterns are then used to extract

the PFDs, and the PFDs that satisfy the minimum coverage

will be reported. The user of Anmat will be able to display

the tableau of each dependency and confirmwhether that dis-

covered dependency is valid for the dataset at hand (Figure 4).

The displayed patterns have the form "pattern::position, fre-

quency", where the position represents the token number

at which the combination of tokens that form the pattern

start, assuming that the position of the first token is 0. The

frequency represents the number of tuples that contain the

pattern. When the patterns are extracted using n-grams, the

position represents the position of the character at which

the n-gram starts. Please note that n-grams are mainly used

to extract patterns from attributes that contain single token

which could be a code or ids.

Figure 5: Detecting Errors using PFDs

Data Dependendcy Pattern Tableau Errors

D1

850\D{7} → FL 8505467600 | CA

Phone Number 607\D{7} → NY 6073771300 | PA

→ 404\D{7} → GA 4048481918 | OK

State 217\D{7} → IL 2176163297 | TX

860\D{7} → CT 8602713444 | SC

D2

\A∗,\ Donald\A∗→M Holloway, Donald E. | F

Full Name \A∗,\ Stacey\A∗ → F Jones, Stacey R. | M

→ \A∗,\ David → M Kimbell, David | F

Gender \A∗,\ Jerry\A∗ →M Mallack, Jerry L. | F

\A∗,\ Alan\A∗ →M Otillio, Alan P. | F

D5 ZIP → CITY

6060\D → Chicago 60601 | Chicag

6060\D → Chicago 60603-6263 | C

6060\D → Chicago 60601 | Chciago

D5 ZIP → STATE

60\D{3} → IL 60603 | lL

95\D{3} → CA 95603 | MI

Table 3: Discovered PFDs and Detected Errors

Error Detection using Discovered PFDs. Based on the

confirmed dependencies, Anmat will run them through the

corresponding columns and return all violations, which are

highly likely to be erroneous values. Since easy validation of

the reported errors increases data cleaning tools’ usability, it

is important for Anmat to provide techniques to validate the

errors. The user of Anmat can display the violated rule(s)

in the tableau and the full violating records to have more

insights about the violations and confirm whether it is an

error. Figure 5 show examples of reported violations for the

dependency Full Name → Gender. More examples for errors

discovered from different datasets are shown in Table 3.

REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of databases. 1995.

[2] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Conditional functional

dependencies for capturing data inconsistencies. ACM Trans. Database
Syst., 33(2):6:1–6:48, 2008.

[3] Z. Huang and Y. He. Auto-detect: Data-driven error detection in tables.

In SIGMOD, pages 1377–1392, 2018.
[4] Z. Khayyat, I. F. Ilyas, A. Jindal, S. Madden, M. Ouzzani, J.-A. Quiane-

Ruiz, P. Papotti, N. Tang, and S. Yin. BigDansing: a system for big data

cleansing. In SIGMOD, 2015.
[5] A. A. Qahtan, A. K. Elmagarmid, R. C. Fernandez, M. Ouzzani, and

N. Tang. FAHES: A robust disguised missing values detector. In KDD,
pages 2100–2109, 2018.

[6] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential

time: Preliminary report. In STOC, pages 1–9, 1973.

4

	Abstract
	1 Introduction
	2 Pattern Functional Dependencies
	3 Discovery and Error Detection
	4 Demonstration Overview

