
Coresets over Multiple Tables for Feature-rich and Data-eicient
Machine Learning

Jiayi Wang
Tsinghua University

jiayi-wa20@mails.tsinghua.edu.cn

Chengliang Chai
Tsinghua University
ccl@tsinghua.edu.cn

Nan Tang
QCRI

ntang@hbku.edu.qa

Jiabin Liu
Tsinghua University

liujb19@mails.tsinghua.edu.cn

Guoliang Li
Tsinghua University

liguoliang@tsinghua.edu.cn

ABSTRACT
Successful machine learning (ML) needs to learn from good data.
However, one common issue about train data for ML practitioners
is the lack of good features. To mitigate this problem, feature aug-
mentation is often employed by joining with (or enriching features
from) multiple tables, so as to become feature-rich ML. A conse-
quent problem is that the enriched train data may contain too many
tuples, especially if the feature augmentation is obtained through
1 (or many)-to-many or fuzzy joins. Training an ML model with a
very large train dataset is data-inecient. Coreset is often used to
achieve data-ecient ML training, which selects a small subset of
train data that can theoretically and practically perform similarly
as using the full dataset. However, coreset selection over a large
train dataset is also known to be time-consuming.

In this paper, we aim at achieving both feature-rich ML through
feature augmentation and data-ecient ML through coreset se-
lection. In order to avoid time-consuming coreset selection over
a feature augmented (or fully materialized) table, we propose to
eciently select the coreset without materializing the augmented
table. Note that coreset selection typically uses weighted gradients
of the subset to approximate the full gradient of the entire train
dataset. Our key idea is that the gradient computation for coreset
selection of the augmented table can be pushed down to partial
feature similarity of tuples within each individual table, without
join materialization. These partial feature similarity values can be
aggregated to estimate the gradient of the augmented table, which
is upper bounded with provable theoretical guarantees. Extensive
experiments show that our method can improve the eciency by
nearly 2 orders of magnitudes, while keeping almost the same ac-
curacy as training with the fully augmented train data.

PVLDB Reference Format:
Jiayi Wang, Chengliang Chai, Nan Tang, Jiabin Liu, and Guoliang Li.
Coresets over Multiple Tables for Feature-rich and Data-ecient Machine
Learning . PVLDB, 16(1): 64 - 76, 2022.
doi:10.14778/3561261.3561267

Chengliang Chai and Guoliang Li are the corresponding authors.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 1 ISSN 2150-8097.
doi:10.14778/3561261.3561267

Movie
MovieID
Title
Length
BoxOffice
Score

PersonID
MovieID

CompnayID
MovieID

PersonID
Name
Age
AverageScore
TotalBoxOffice

CompnayID
Country
AverageScore
EmployeeNumber
TotalBoxOffice

Direct

Production

Person

Company

1

*

*

1 1

1 1

Movie+

MovieID
Title
Length
BoxOffice
Score
PersonID
Name
Age
Person_AverageScore
Person_TotalBoxOffice
CompanyID
Country
Company_AverageScore
Company_EmployeeNumber
Company_TotalBoxOffice

Augmented
Features

(a) Base table Movie and other four tables,
Direct, Person, Production and Company,
that can be used to augment the feature of Movie (b) Feature augmented table Movie+

<latexit sha1_base64="eDp8DFc5EXuxqDBUKqz30VPNB7c=">AAAB8nicdVDLSsNAFJ3UV62vqks3g0VwVZI21LgrunFZxT4gLWUynbRDJ5kwc6OU0M9w40IRt36NO//G6UNQ0QMXDufcy733BIngGmz7w8qtrK6tb+Q3C1vbO7t7xf2DlpapoqxJpZCqExDNBI9ZEzgI1kkUI1EgWDsYX8789h1Tmsv4FiYJ60VkGPOQUwJG8rs3fDgCopS87xdLdtmzq55XwXbZnsMQt1pzvXPsLJUSWqLRL753B5KmEYuBCqK179gJ9DKigFPBpoVuqllC6JgMmW9oTCKme9n85Ck+McoAh1KZigHP1e8TGYm0nkSB6YwIjPRvbyb+5fkphF4v43GSAovpYlGYCgwSz/7HA64YBTExhFDFza2YjogiFExKBRPC16f4f9KqlJ1a2b12S/WLZRx5dISO0Sly0BmqoyvUQE1EkUQP6Ak9W2A9Wi/W66I1Zy1nDtEPWG+f7veRtQ==</latexit>)

Figure 1: Feature-rich ML through feature augmentation.

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/for0nething/RECON.

1 INTRODUCTION
Feature-rich machine learning (ML) [14, 15, 29, 35] means that ML
models are trained with enough and good features. Given train
data, data-ecient ML [3, 4, 39] aims at training ML models faster
without sacricing the model accuracy. Putting them together, the
goal is to eciently train robust ML models.

For achieving feature-richML, the widely used practice is to
enrich features by joining a base table withmultiple tables, a.k.a. fea-
ture augmentation [12, 15, 30].

Example 1. [Feature-rich ML through Feature Augmentation.]
Consider an ML task that predicts the Score value of a movie based
on attributes (i.e., features) MovieID, Title, Length and BoxOffice,
as shown in the Movie table in Figure 1(a). Intuitively, because many
important features are missing, such as the features of directors and
the actors of a movie, it is hard to train a good ML model.

Consider four tables Direct, Person, Production and Company,
which can be joined, directly or indirectly, with the Movie table through
predened joins, as shown in Figure 1(a). The primary key of each
table is annotated with an underline (e.g., MovieID for table Movie).
These tables can be joined with either 1-to-1 relationship or 1-to-many
(i.e., 1-to-∗) relationship. The feature-rich table with new features
augmented through joins, denoted by Movie+, is shown in Figure 1(b).

For data-ecientML, besides traditional methods (e.g., stochas-
tic gradient descent and its variants), there are many recent eorts
on selecting a train data subset that can theoretically and practically
perform on par with the full dataset, a.k.a. coresets [18, 41].

https://doi.org/10.14778/3561261.3561267
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3561261.3561267
https://github.com/for0nething/RECON

Base Table𝑇 + Multiple Tables for Augmentation

feature augmentation
through joins

(accuracy: high)

��

without materializing the
augmented table
(accuracy: high)
(latency: low)

&&
Augmented Table𝑇 + coreset (latency: high) // 𝐶 (𝑇 +)

Figure 2: Various design choices.

In order to achieve both feature-rich and data-ecientML, an
intuitive solution is to rst conduct feature augmentation through
joins across multiple relational tables, followed by performing core-
set selection over the train data with enriched features. In Figure 2,
this strategy is depicted by rst following the “⇒” arrow from the
base table 𝑇 and then the “→” arrow.

Before we discuss the problem we study in this paper, let’s ana-
lyze the benets and limitations of the aforementioned strategies,
using real experiments (see more details in § 6).

Example 2. [Benets and Limitations of Existing Strategies.]
Please refer to Figure 3 for the following discussions.

Train with the Base Table. If we train an ML model using the base
table 𝑇 for a multi-classication task, we can achieve an accuracy
0.61 (Figure 3(a)–Ê) and use 11 minutes for training (Figure 3(b)–Ê).
We consider this as a baseline.

Train with the Coreset. If we rst compute the coreset 𝐶 (𝑇) of the
base table 𝑇 , and then train an ML model using the computed core-
set, we can also achieve an accuracy 0.61 (Figure 3(a)–Ë) but use 2
minutes in total for selecting the coreset and training with the coreset
(Figure 3(b)–Ë). This shows that using coreset can signicantly reduce
the training time without sacricing the accuracy.

Train with the Augmented Table. As we know, the process of feature
augmentation consists of 1 (many)-to-many joins [14, 15, 35, 49]. In
this situation, the size of the augmented table 𝑇 + is likely to be much
larger than the base table 𝑇 . Although training with the augmented
table can achieve a much higher accuracy 0.68 (Figure 3(a)–Ì), it
takes around 2.8 days for training over 10 million tuples (Figure 3(b)–
Ì).

Train with the Coreset of the Augmented Table. If we rst compute
the coreset of the augmented table, and then train with this coreset, we
can achieve the same accuracy 0.68 (Figure 3(a)–Í). However, because
coreset computation on a large table is time-consuming which takes
2.2 days in this case, putting the time of feature augmentation (5
minutes) and training (0.5 hours) together, it takes around 2.2 days
(Figure 3(b)–Í).

Example 2 tells us that feature augmentation can signicantly
increase the accuracy and training with a coreset can signicantly
reduce the time. However, computing the coreset over a large table
(e.g., the augmented table) is time-consuming.

In order to eciently compute the coreset of the augmented table,
the problem we aim to tackle is whether we can compute the
coreset of the augmented table without join materialization.

Hour
Minute

Day

11 mins

2.8 days

Model Training
Coreset
Feature Augmentation

2.2 days

1.8 hours

2.8 days 2.2 days

1.3 hours2 mins

Ac
cu

ra
cy

1

0.68 0.68 0.68

0.61 0.61

(a) Effectiveness (Accuracy) (b) Efficiency
2 3 4 5 1 2 3 4 5

Coreset without
join materialization

T
Base
table

T+
Feature

augmented
table

C(T+)
Corset
with join

materializa-
tion

C(T+)
Corset

without join
materializa-

tion

C(T)
Corset

Figure 3: Comparison of various design choices.

This strategy is depicted in Figure 2 by following the “;” arrow
from the base table.

Key Idea. Our solution is inspired by the classical SQL query
optimization technique pushdown that moves predicates in the
WHERE clause closer to the tables they refer to. Next let’s build
the connection between pushdown and our problem. Generally
speaking, coreset computation is to select a subset of tuples, and
use the weighted gradients of these tuples to approximate the full
gradient of the entire train data. In our context, pushdown for
coreset over multiple tables means that we can approximately
compute the gradient of each individual table and sum up these
gradients from multiple tables to compute the full gradient of the
joined table. That is, the gradient computation is pushed down.

Challenges. Applying pushdown to compute the coreset of the
augmented table without join materialization faces two challenges.
(C1) How to deal with each individual table so that the estimated

full gradients can be bounded with theoretical guarantees,
and thus the accuracy will not be sacriced?

(C2) How to eciently aggregate information distributed in
dierent tables to well approximate the full gradient?

Our Methodology. To address the above challenges, we propose
feature-Rich and data-Ecient machine learning with Coreset selec-
tion withOut join materializatioN, namely RECON, which groups the
tuples in each table based on predened group key and compute the
gradient bounds of these groups based on tuple-wise partial feature
similarity. We prove that the full gradient can be bounded using
these partial feature similarity values of dierent groups (for C1).
Based on the computed partial feature similarity values, we prove
that the coreset computation problem over multiple tables is NP-
hard and has the submodular property, so we use a greedy algorithm
with an approximate ratio to aggregate the partial feature similar-
ity values in dierent tables, and then compute a well-performed
coreset (for C2).

Figure 3 shows that RECON can signicantly reduce the total
time from more than 2 days to 1.8 hours (Figure 3(b)–Î) without
sacricing the accuracy (Figure 3(a)–Î). See § 6 for more details.

Contributions. In this paper, we make a rst attempt to study
coreset selection over multiple tables without full materialization.
In sum, we make the following notable contributions.
(1) We introduce coreset selection over a single table, its sample-
based optimization, and our key idea of supporting coreset selection
over multiple tables without full materialization in § 3.

(2) We provide theoretical guarantees on the gradient approxima-
tion of the augmented table using partial feature similarity values
computed from each single table. We also prove that the coreset
computation over multiple tables is an NP-hard problem with the
submodular property. Putting them together, we theoretically show
that gradient approximation error of coreset for the augmented
table can be upper bounded by the computation of each individual
table, without physically joining them in § 4.
(3) We propose an ecient greedy algorithm to compute the core-
set of the augmented table without materializing the joins. To be
specic, we utilize a dynamic programming algorithm to eciently
aggregate partial feature similarity values from multiple tables and
nally bound the full gradient in § 5.
(4) We conducted extensive experiments on 5 real world datasets to
evaluate the eciency of our proposed method. The experimental
results demonstrate that our method can improve the eciency to
nearly 2 orders of magnitudes by training over the selected coreset
(∼ 0.1% of the entire train data), while keeping almost the same
accuracy as training with the fully augmented train data in § 6.

2 RELATEDWORK
Generally speaking, there are two ways of table enrichment for
better training ML models, either by adding more columns (i.e.,
feature augmentation) or more tuples (i.e., data acquisition [48]).
Both are common in practice and they are complementary to each
other. Our proposal falls into the category of feature augmentation.

Feature augmentation. A brute force solution is to execute joins
to augment new features. Another line of research focuses on avoid-
ing unnecessary joins (e.g., Kumar et al. [30] and Shah et al. [50]),
when the foreign join key has already contained all the information
of the external table. There are also studies [15, 35] on iterative
feature augmentation, which iteratively select an optimal sub-
set of tables, such that features augmented from these tables can
signicantly improve the model performance.

Dierent from (iterative) feature augmentation, by following
the setting in [21, 29, 34], we assume that which joins are useful
(i.e., which attributes should be added) are given. Besides, iterative
feature augmentation [15, 35] needs to join tables, train over the
result and test the performance iteratively, which is rather time-
consuming. Therefore, RECON can be leveraged to accelerate this
process in each iteration. In terms of avoiding unnecessary joins,
we can take it as a ltering of our method. That is, the outputs of
the method are the input of our method. Note that [30, 50] do not
support to avoid one-to-many, many-to-many and fuzzy joins. In
summary, the above methods are complementary to our proposal.

Note that when the number of features is large, feature selec-
tion (a.k.a. variable selection or attribute selection), is the process
of selecting a subset of good features for use in model construction
and has been extensively studied in the ML community [20], which
is orthogonal to feature augmentation tackled in this paper.

Coreset selection. Existing coresete selection algorithms are de-
signed for one table. Huang et al. [23] proposed to select and update
the coreset while training. The goal is to use the loss of training
tuples in the coreset to approximate the overall training loss of
the entire dataset. Since they have to train the model, it is rather

time-consuming. To address this, works [8, 9] focused on selecting
the coreset without training in advance, but they are customized
to particular model types respectively. The high level idea is to
compute a sensitive score for each tuple. The higher the score, the
more likely the tuple should be a member of the coreset. Dataset
condensation [56, 57] tries to synthesize a small set of train data, in-
stead of selecting a small set of train data. Hence, the related work
is closer to knowledge distillation than coreset selection. Moreover,
these papers are only tested on image data. In terms of tabular
data, it is not veried whether it can synthesize a small set of train
data while well preserving the labels. The other typical line of
works [27, 39, 40] focused on selecting the coreset to approximate
the full gradient, which is modeled as an optimization problem that
can be solved by a framework with three nested loops (see § 3.2).

None of them considers coreset selection over multiple tables.
Dierent from them, we make the rst attempt to select coresets
over multiple tables without full materialization.

FactorizedML (FML) achieves ecient ML training by decoupling
the ML computations through joins to the base tables [14, 25, 28, 29,
34, 43, 47, 49]. The key idea is to reduce redundant linear algebra
computations during training over the multi-table joins. Most of
these methods only focus on specic ML models or platforms, e.g.,
Olteanu et al. [43, 49] focus on linear regression models, and [28, 47]
are for in-memory databases. Recently, Kumar et al. [14, 25, 29,
34] build a general FML framework by decoupling linear algebra
computations from various ML algorithms.

The dierence from us is that they still need to train over the
full join results. Moreover, we aim at accelerating ML training by
reducing the amount of train data through selecting the coreset.
However, they focus on the batch gradient descent algorithm for
training rather than supporting the stochastic gradient descent.,
which is widely used in practice due to its high eciency.

In addition, we have also empirically veried that our proposal
outperforms FML-based methods for the batch gradient descent
scenario (see § 6 for more details).

Datamanagement techniques forML. Besides existing works [6,
13, 14, 17, 29, 31, 54] that leverage database techniques to improve
the eciency, there are also many works that aim at improving the
eectiveness of ML models, including data discovery [15, 36], data
labeling [11, 33], data compression [52, 55], data cleaning [10] and
data exploration [44, 45].

3 CORESET SELECTION FRAMEWORK
3.1 Gradient Descent for Machine Learning
Gradient descent is by far the most popular optimization strategy
used in machine learning. Generally speaking, based on a convex
and dierentiable function, it iteratively tweaks the parameters to
minimize a given function to its local minimum.

Let 𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑛} be a set of labeled train tuples, where
𝑡𝑖 = (x𝑖 , y𝑖), x𝑖 ∈ R𝑑 denotes the feature vector and y𝑖 is the
corresponding label. The objective of training on 𝑇 is to compute
the best parameter \∗ w.r.t. an ML model so as to minimize the loss:

\∗ = argmin
\ ∈𝜗

𝑙 (\), 𝑙 (\) = 1
𝑛

𝑛∑︁
𝑖=1

𝑙𝑖 (\, 𝑡𝑖) (1)

Algorithm 1: Basic Coreset Algorithm of One Table
Input: The train data𝑇 , coreset size 𝐾 .
Output: A coreset𝐶 ⊆ 𝑇 , weight𝑊 = {𝑤𝑗 }, |𝐶 | = |𝑊 | = 𝐾 .
𝐶 = ∅;1

while |𝐶 | < 𝐾 do2

/*1st loop*/3

for each tuple 𝑡 ∈ 𝑇 \𝐶 do4

/*2nd loop*/5

Compute𝑈 (𝑡 |𝐶) considering all tuples in𝑇 ; /*3rd loop*/6

𝑡∗ = argmax𝑡∈𝑇 \𝐶 𝑈 (𝑡 |𝐶) ;7

𝐶 = 𝐶 ∪ {𝑡∗ };8

for j = 1 to |𝐶 | do9

𝑤𝑗 =
∑𝑛

𝑖=1 I[𝑗 = argmin𝑐 𝑗′∈𝐶 max
\∈𝜗

‖∇𝑙𝑖 (\) − ∇𝑙𝛾 (𝑗′) (\) ‖];10

return𝐶,𝑊 ;11

Single Table T

CCoreset
Coreset Selection

-

n∑

i=1

∇li(θ)

∇l1(θ)
∇l2(θ)
∇l3(θ)
∇l4(θ)
∇l5(θ)
∇l6(θ)

∇l7(θ)
∇l8(θ)

|C|∑

j=1

wj∇lγ(j)(θ)

w1∇lγ(1)(θ)

w3∇lγ(3)(θ)

w2∇lγ(2)(θ)

Figure 4: Example of coreset selection for a single table.

where 𝜗 denotes the parameter space. For ease of representation,
we just use 𝑙𝑖 (\) to denote the loss of the 𝑖-th train example, i.e.,
𝑙𝑖 (\, 𝑡𝑖). Typically, the gradient descent method is always applied
to optimize Eq. 1, where the full gradient, denoted by ∇𝑙 (\), is
required to be computed iteratively.

Although some classic incremental gradient methods such as
stochastic gradient descent (SGD), can be utilized to accelerate this
process, it is still expensive when there are massive train tuples.

3.2 Coreset of One Table 𝑇

Coreset. The main problem of learning using a large train dataset
𝑇 is low eciency. Hence, instead of learning from entire 𝑇 , one
research direction seeks to answer the question that whether we
can compute a small subset𝐶 (𝑇) of𝑇 such that learning using𝐶 (𝑇)
can hopefully have the same performance as learning using𝑇 . This
small subset is called the coreset [18, 41]. In the rest of the paper,
we will simply write 𝐶 (𝑇) as 𝐶 , when it is clear from the context.

To compute the coreset, the SOTA solutions are mainly based on
gradient approximation [26, 39]. Intuitively, if \ is the parameter of
an ML model trained using the full dataset, and \ ′ is the parameter
of the same ML model trained using the subset (or coreset), the
goal is ∇𝑙 (\) = ∇𝑙 (\ ′). Based on gradient approximation, existing
solutions can lead to good performance with theoretical guarantees,
i.e., ∇𝑙 (\) is upper-bounded by ∇𝑙 (\ ′). Next let’s formally dene it.

Coreset selection based on gradient descent. Let ∇𝑙 (\) =∑𝑛
𝑖=1 ∇𝑙𝑖 (\) be the full gradient training using the entire training

dataset, the problem of coreset selection is to minimize the gradi-
ent approximation error [39] between the full gradient w.r.t. 𝑇
and the weighted sum of gradients w.r.t. the coreset 𝐶 (or coreset
gradient).

𝐶∗ = argmin
𝐶⊆𝑇,𝑤𝑗 ≥0

max
\ ∈𝜗

‖
𝑛∑︁
𝑖=1

∇𝑙𝑖 (\)︸ ︷︷ ︸
full gradient

−
|𝐶 |∑︁
𝑗=1

𝑤 𝑗∇𝑙𝛾 (𝑗) (\)︸ ︷︷ ︸
coreset gradient︸ ︷︷ ︸

gradient approximation error

‖,

𝑠 .𝑡 . |𝐶 | ≤ 𝐾

(2)

Eq. 2 tries to minimize the gradient approximation error using
a coreset of size at most 𝐾 by considering all possible parameters
\ ∈ 𝜗 (i.e., max

\ ∈𝜗
), where “‖ · ‖” denotes the normed dierence.

The full gradient has been dened earlier as ∇𝑙 (\) =∑𝑛
𝑖=1 ∇𝑙𝑖 (\). Next, let’s focus on explaining how to compute the

coreset gradient in Eq. 2. We use 𝛾 (𝑗) = 𝑖, 𝑗 ∈ [1, |𝐶 |], 𝑖 ∈ [1, 𝑛]
to denote that the 𝑗-th tuple in 𝐶 (denoted by 𝑐 𝑗) is the 𝑖-th tuple
in 𝑇 , i.e., 𝑡𝑖 . In other words, 𝛾 is an index mapping from 𝐶 to 𝑇 .
Besides, Eq. 2 potentially contains another important mapping 𝜙
similar to 𝛾 , i.e., 𝜙 (𝑖) = 𝑗, 𝑖 ∈ [1, 𝑛], 𝑗 ∈ [1, |𝐶 |], which has a close
relationship with the weight𝑤 . To be specic, let 𝜙 (𝑖) = 𝑗 denote
that we will assign 𝑡𝑖 to 𝑐 𝑗 and use ∇𝑙𝛾 (𝑗) to represent ∇𝑙𝑖 . Each
𝑡𝑖 will be assigned to one and only one 𝑐 𝑗 , but each 𝑐 𝑗 might be
assigned with multiple tuples in𝑇 . Based on 𝜙 ,𝑤 𝑗 is dened as the
weight of the 𝑐 𝑗 , which is the number of tuples in𝑇 assigned to the
𝑐 𝑗 , i.e.,𝑤 𝑗 = |{𝑡𝑖 |𝜙 (𝑖) = 𝑗, 𝑖 ∈ [1, 𝑛]}|.

Next let’s use an example to better illustrate Eq. 2.
Example 3. Let us consider a special case of the gradients of each

tuple, as shown in Figure 4. Suppose that for any \ ,∇𝑙1 (\) ≈ ∇𝑙2 (\) ≈
∇𝑙3 (\), ∇𝑙4 (\) ≈ ∇𝑙5 (\) and ∇𝑙6 (\) ≈ ∇𝑙7 (\) ≈ ∇𝑙8 (\). In this
situation, if we want to nd an optimal coreset with a size of 3, i.e.,
𝐾 = 3 based on Eq. 2, the solution can be 𝐶∗ = {𝑡1, 𝑡4, 𝑡6} (𝛾 (1) =

1, 𝛾 (2) = 4 and 𝛾 (3) = 6), associated with 𝑤1 = 3,𝑤2 = 2,𝑤3 = 3
because 𝜙 (1) = 𝜙 (2) = 𝜙 (3) = 1, 𝜙 (4) = 𝜙 (5) = 2 and 𝜙 (6) =

𝜙 (7) = 𝜙 (8) = 3. In this way, 𝐶∗ will be one of the optimal coresets

that can well approximate the full gradient because ‖
8∑
𝑖=1

∇𝑙𝑖 (\) −
3∑
𝑗=1

𝑤 𝑗∇𝑙𝛾 (𝑗) (\)‖ ≈ 0, which is minimized.

We can observe from Example 3 that, if 𝜙 (𝑖) = 𝑗 , ∇𝑙𝑖 and ∇𝑙𝛾 (𝑗)
are likely to be close such that the gradient approximation error,
i.e., Eq. 2, tends to be minimized. Intuitively, computing the coreset
is similar to computing the 𝐾 exemplars [46] of the gradients, if all
the gradients of tuples can be computed.

For training with the popular SGD method, the coreset 𝐶 is
rst randomly shued. Then during each step of gradient descent,
suppose that we need to use 𝑐 𝑗 ∈ 𝐶 for gradient update. We rst
compute the gradient of 𝑐 𝑗 , say ∇𝑙 . Then we use𝑤 𝑗∇𝑙 to update the
parameters of the ML model. The above process is repeated until
the ML model converges.

Basic Coreset Algorithm of One Table. The basic coreset al-
gorithm is illustrated in Figure 5(a) and Algorithm 1. Initialized
with an empty coreset𝐶 , a coreset of size 𝐾 is achieved using three
nested for-loops.

• 1st for-loop (lines 2-8). Each iteration of the 1st for-loop
will add the tuple with the maximum “utility” to the coreset
(lines 7-8). The “utility” of a tuple 𝑡 denotes the reduction

Initialize coreset C as empty
for |C| <= K do

for each tuple t in T \ C do
 utility(t) = 0

for each x in T do
 update utility(t) using x

⎬|T|

�D��%DVLF�&RUHVHW�$OJRULWKP

for each tuple t in sample do

�E��6DPSOH�EDVHG���QG�IRU�ORRS�

for each x in T+ = T1 … Tn do
 update utility(t) using x

⎬|T+|

�F��:LWK�MRLQ�PDWHULDOL]DWLRQ���UG�IRU�ORRS� �G��:LWKRXW�MRLQ�PDWHULDOL]DWLRQ���UG�IRU�ORRS�

for each group g in T+ = T1 … Tn do
 (by group estimation)
 update utility(t) using g

⎬|G|

 add t with the max XWLlity to C

<latexit sha1_base64="67Vh/1KBU4yCT3DhUOzGmoQRfC4=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0J6jHgxWME84BkCbOTTjJkdmaZmVXCko/w4kERr36PN//GSbIHTSxoKKq66e6KEsGN9f1vb219Y3Nru7BT3N3bPzgsHR03jUo1wwZTQul2RA0KLrFhuRXYTjTSOBLYisa3M7/1iNpwJR/sJMEwpkPJB5xR66RWN1JPlmOvVPYr/hxklQQ5KUOOeq/01e0rlsYoLRPUmE7gJzbMqLacCZwWu6nBhLIxHWLHUUljNGE2P3dKzp3SJwOlXUlL5urviYzGxkziyHXG1I7MsjcT//M6qR3chBmXSWpRssWiQSqIVWT2O+lzjcyKiSOUae5uJWxENWXWJVR0IQTLL6+S5mUluKpU76vlWjWPowCncAYXEMA11OAO6tAABmN4hld48xLvxXv3Phata14+cwJ/4H3+AHnuj6E=</latexit>

./
<latexit sha1_base64="67Vh/1KBU4yCT3DhUOzGmoQRfC4=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0J6jHgxWME84BkCbOTTjJkdmaZmVXCko/w4kERr36PN//GSbIHTSxoKKq66e6KEsGN9f1vb219Y3Nru7BT3N3bPzgsHR03jUo1wwZTQul2RA0KLrFhuRXYTjTSOBLYisa3M7/1iNpwJR/sJMEwpkPJB5xR66RWN1JPlmOvVPYr/hxklQQ5KUOOeq/01e0rlsYoLRPUmE7gJzbMqLacCZwWu6nBhLIxHWLHUUljNGE2P3dKzp3SJwOlXUlL5urviYzGxkziyHXG1I7MsjcT//M6qR3chBmXSWpRssWiQSqIVWT2O+lzjcyKiSOUae5uJWxENWXWJVR0IQTLL6+S5mUluKpU76vlWjWPowCncAYXEMA11OAO6tAABmN4hld48xLvxXv3Phata14+cwJ/4H3+AHnuj6E=</latexit>

./
<latexit sha1_base64="67Vh/1KBU4yCT3DhUOzGmoQRfC4=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0J6jHgxWME84BkCbOTTjJkdmaZmVXCko/w4kERr36PN//GSbIHTSxoKKq66e6KEsGN9f1vb219Y3Nru7BT3N3bPzgsHR03jUo1wwZTQul2RA0KLrFhuRXYTjTSOBLYisa3M7/1iNpwJR/sJMEwpkPJB5xR66RWN1JPlmOvVPYr/hxklQQ5KUOOeq/01e0rlsYoLRPUmE7gJzbMqLacCZwWu6nBhLIxHWLHUUljNGE2P3dKzp3SJwOlXUlL5urviYzGxkziyHXG1I7MsjcT//M6qR3chBmXSWpRssWiQSqIVWT2O+lzjcyKiSOUae5uJWxENWXWJVR0IQTLL6+S5mUluKpU76vlWjWPowCncAYXEMA11OAO6tAABmN4hld48xLvxXv3Phata14+cwJ/4H3+AHnuj6E=</latexit>

./
<latexit sha1_base64="67Vh/1KBU4yCT3DhUOzGmoQRfC4=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0J6jHgxWME84BkCbOTTjJkdmaZmVXCko/w4kERr36PN//GSbIHTSxoKKq66e6KEsGN9f1vb219Y3Nru7BT3N3bPzgsHR03jUo1wwZTQul2RA0KLrFhuRXYTjTSOBLYisa3M7/1iNpwJR/sJMEwpkPJB5xR66RWN1JPlmOvVPYr/hxklQQ5KUOOeq/01e0rlsYoLRPUmE7gJzbMqLacCZwWu6nBhLIxHWLHUUljNGE2P3dKzp3SJwOlXUlL5urviYzGxkziyHXG1I7MsjcT//M6qR3chBmXSWpRssWiQSqIVWT2O+lzjcyKiSOUae5uJWxENWXWJVR0IQTLL6+S5mUluKpU76vlWjWPowCncAYXEMA11OAO6tAABmN4hld48xLvxXv3Phata14+cwJ/4H3+AHnuj6E=</latexit>

./

#-tuples in T+

#-groups

Optimization for one table Optimization for multiple tables

S
<latexit sha1_base64="J42s1stmUFZULE1USNhCP/WgGU8=">AAADO3icjVLLTsJAFD3UF+ILdOmmkZi4IsVgdEl04xKjPBIkZjoO2NBX2qkJIXyGW/0SP8S1GzVu3XtnLIlKEKdpe+fcc87Mnbl26DqxtKynjDE3v7C4lF3OrayurW/kC5uNOEgiLuo8cIOoZbNYuI4v6tKRrmiFkWCe7Yqm3T9R+eatiGIn8C/kIBQdj/V8p+twJglqX3pM3nDmDs9HV/miVbL0MCeDchoUkY5aUMis4RLXCMCRwIOAD0mxC4aYnjbKsBAS1sGQsIgiR+cFRsiRNiGWIAYjtE/fHs3aKerTXHnGWs1pFZfeiJQmdkkTEC+iWK1m6nyinRU6zXuoPdXeBvS3Uy+PUIkbQmfpxsz/6lQtEl0c6RocqinUiKqOpy6JPhW1c/NbVZIcQsJUfE35iGKuleNzNrUm1rWrs2U6/6KZClVznnITvP5ZnU2u029E5WcxQtpjl3avVlO8HHVT+XfvTAaN/VK5Ujo4qxSrx2lfZbGNHexR7xyiilPUUNe3e4d7PBiPxrPxZrx/UY1MqtnCj2F8fAI+JapK</latexit>

Figure 5: Basic coreset selection (a), typical optimization techniques (b, c), and our optimization for multiple tables (d).

of gradient approximation error in Eq. 2 after adding 𝑡 into
the coreset 𝐶 , denoted by i.e.,𝑈 (𝑡 |𝐶).

• 2nd for-loop (lines 4-6). Each iteration of the 2nd-
iteration will compute the utility of a tuple 𝑡 that is not
in coreset 𝐶 .

• 3rd for-loop (line 6). It iterates all tuples in 𝑇 to compute
the utility of tuple 𝑡 used in the 2nd for-loop.

• Weights computation (lines 9-10). It computes the
weight of each tuple in the coreset, which will be used
to approximate the full gradient.

Apparently, the solution with 3 loops is rather time-consuming.
Fortunately, coresets satisfy the submodular property [24] (Theo-
rem 2 in § 4), based on which an ecient method can accelerate the
2nd loop that uniformly samples tuple set S from 𝑇 \𝐶 and selects
the best one from the sampled ones [38]. It holds a (1 − 1

𝑒 − 𝜖)
approximate ratio, where 𝜖 is related to the sampling ratio.

Coreset by sampling. The optimization of sampling-based coreset
selection algorithm is illustrated in Figure 5(b), where the sample
S is a subset of 𝑇 \𝐶 (“\” denotes the operation set dierence).

3.3 Coreset of Multiple Tables
As discussed above, to achieve feature-rich ML, the base table has
to be augmented to get useful features through joining other tables.

With materialization. A natural solution is rst to do feature
augmentation by executing the joins, and then use the above coreset
selection on the materialized result. Figure 5(c) depicts this solution.

Note that, for feature augmentation, theremight have one-to-one,
one-to-many, many-to-many and fuzzy joins. Hence, the materi-
alized view might be very large. Consequently, the eciency of
coreset selection is low (see Figure 3(b)-Í).

Without materialization. Our key idea to improve the eciency
of coreset of multiple tables is to estimate the utility of each “group”
without join materialization, where a group refers to a set of tuples
in the joined results having the same attribute values on a prede-
ned set of attributes, as shown in Figure 5(d). Conceptually, the
utility can be estimated by rst computing the feature similarity of
tuples in each individual table, and then aggregating them using a
dynamic programming algorithm without join materialization. By
doing so, we can signicantly reduce the computation in the 3rd
for-loop, thus improving the overall eciency (see Figure 3(b)-Î).

4 GRADIENT APPROXIMATION ERROR
BOUNDED BY GROUPS

In this section, we will build the theoretical bound of gradient
computation for coresets over multiple tables. Afterwards, we will
introduce the algorithms by following the theoretical bounds (§ 5).

Let 𝑇 be the base table, 𝑇1,𝑇2, . . . ,𝑇𝑚 be the tables that can be
used to augment the features of𝑇 , and𝑇 + be the feature-augmented
table through predened joins, with |𝑇 + | = 𝑁 . We will prove that
the gradient approximation error of a coreset w.r.t.𝑇 + can be upper-
bounded using the groups (or partitions) of 𝑇 +.

Recall that minimizing Eq. 2 is closely related to the parameter
\ . Unfortunately, the entire parameter space 𝜗 is too expensive to
explore. We will rst prove that the gradient approximation error
is upper-bounded for a xed parameter \ and given groups (§ 4.1).
We will then generalize the above result to the parameter space 𝜗
for given groups (§ 4.2). We will close this section by discussing the
connection between groups in the augmented single table (i.e., 𝑇 +)
and multiple tables (§ 4.3).

Building upon the above results, later § 5 will describe how to
compute groups from multiple tables (i.e., 𝑇 , 𝑇1, . . . ,𝑇𝑚) and use
them to bound the gradient approximation error of the coreset of
𝑇 + without materializing 𝑇 +.
Notation. Similar to § 3, we use ∇𝑙+

𝑖
to denote the loss of the 𝑖-th

training example in 𝑇 +, i.e., 𝑙+
𝑖
(\, 𝑡𝑖).

4.1 Upper Bound of a Fixed \ and Given Groups
Recap that we have a one-to-one mapping 𝜙\ : 𝑇 + → 𝐶 between
tuples in 𝑇 + and 𝐶 . 𝜙\ (𝑖) = 𝑗 denotes that 𝑡+

𝑖
in 𝑇 + should be

assigned to the 𝑗-th tuple in the coreset. With this mapping, we get:

|𝐶 |∑︁
𝑗=1

𝑤 𝑗∇𝑙+𝛾 (𝑗) (\) =
𝑁∑︁
𝑖=1

∇𝑙+
𝛾 (𝜙\ (𝑖)) (\)

so Eq. 2 can be rewritten as [39]:

‖
𝑁∑︁
𝑖=1

∇𝑙+𝑖 (\) −
|𝐶 |∑︁
𝑗=1

𝑤 𝑗∇𝑙+𝛾 (𝑗) (\)‖ = ‖
𝑁∑︁
𝑖=1

(
∇𝑙+𝑖 (\) − ∇𝑙+

𝛾 (𝜙\ (𝑖)) (\)
)
‖

(3)
LetA be the predened attribute set (or the grouping key), based

on which tuples in 𝑇 + are divided into a set G of disjoint groups
𝑔 = |G| such that each group G𝑖 ∈ G contains tuples with the

same values on A (see § 6.1 for more implementation details). We
then use𝐺𝑖 , 𝑖 ∈ [1, 𝑔] to denote the set of indexes (corresponding
to 𝑇 +) of tuples in G𝑖 , i.e., 𝐺𝑖 = {𝑘 |𝑡+

𝑘
∈ 𝑇 +, 𝑡+

𝑘
∈ G𝑖 }. That is,

∪𝑔
𝑖=1𝐺𝑖 = {1, 2, . . . , 𝑁 }. With such grouping, dierent from [39],

the summation from 1 to 𝑁 in Eq. 3 can be rewritten as the sum of
𝑔 summations over the computation results in each G𝑖 :

‖
𝑁∑︁
𝑖=1

(
∇𝑙+𝑖 (\) − ∇𝑙+

𝛾 (𝜙\ (𝑖)) (\)
)
‖

=‖
𝑔∑︁
𝑖=1

∑︁
𝑘∈𝐺𝑖

(
∇𝑙+
𝑘
(\) − ∇𝑙+

𝛾 (𝜙\ (𝑘)) (\)
)
‖

≤
𝑔∑︁
𝑖=1

‖
∑︁
𝑘∈𝐺𝑖

(
∇𝑙+
𝑘
(\) − ∇𝑙+

𝛾 (𝜙\ (𝑘)) (\)
)
‖

≤
𝑔∑︁
𝑖=1

|𝐺𝑖 | max
𝑘∈𝐺𝑖

‖∇𝑙+
𝑘
(\) − ∇𝑙+

𝛾 (𝜙\ (𝑘)) (\)‖

(4)

Eq. 4 comes from the triangle equation. More specically,
‖∇𝑙+

𝑘
(\) − ∇𝑙+

𝛾 (𝜙\ (𝑘)) (\)‖ denotes the gradient dierence between
a tuple 𝑡+

𝑘
∈ 𝑇 + and the tuple 𝑡+

𝛾 (𝜙\ (𝑘)) that 𝑡
+
𝑘
assigns to. Hence, in

each group, the sum of gradient dierence can be bounded by the
group size multiplied by the maximum dierence in the group, i.e.,
|𝐺𝑖 |max𝑘∈𝐺𝑖

‖∇𝑙+
𝑘
(\) −∇𝑙+

𝛾 (𝜙\ (𝑘)) (\)‖. Thus, Eq. 3 can be bounded
by the result of Eq. 4. Next, we focus on how to minimize the bound.

Recap from Example 3, intuitively, the bound (i.e., the right hand
in Eq. 4) will be minimized when 𝜙\ (𝑘) is set to assign each 𝑡+

𝑘
to

the closest tuple in the coreset 𝐶 , w.r.t. the gradient, as follows:
𝑔∑︁
𝑖=1

|𝐺𝑖 | max
𝑘∈𝐺𝑖

min
𝑐 𝑗 ∈𝐶

‖∇𝑙+
𝑘
(\) − ∇𝑙+

𝛾 (𝑗) (\)‖ (5)

However, given a coreset, it is infeasible to compute Eq. 5 because
we have to iterate each tuple in every group, which is equivalent
to iterate the entire 𝑇 +, but the large 𝑇 + will not be materialized
due to the ineciency. To address this issue, considering Eq. 4 and
Eq. 5 and leveraging max-min inequality [7] over Eq. 5, we can get:

‖
𝑁∑︁
𝑖=1

∇𝑙+𝑖 (\) −
|𝐶 |∑︁
𝑗=1

𝑤 𝑗∇𝑙+𝛾 (𝑗) (\)‖

≤
𝑔∑︁
𝑖=1

|𝐺𝑖 | max
𝑘∈𝐺𝑖

min
𝑐 𝑗 ∈𝐶

‖∇𝑙+
𝑘
(\) − ∇𝑙+

𝛾 (𝑗) (\)‖

≤
𝑔∑︁
𝑖=1

|𝐺𝑖 | min
𝑐 𝑗 ∈𝐶

max
𝑘∈𝐺𝑖

‖∇𝑙+
𝑘
(\) − ∇𝑙+

𝛾 (𝑗) (\)‖

(6)

Given Eq. 6, we can iterate the much smaller coreset 𝐶 and the
gradient approximate error can be bounded using the largest gra-
dient dierence between 𝑐 𝑗 ∈ 𝐶 and tuples within each group,
i.e., max𝑘∈𝐺𝑖

‖∇𝑙+
𝑘
(\) − ∇𝑙+

𝛾 (𝑗) (\)‖, which can be computed e-
ciently without joining all tables (see § 5). In this way, all tuples
within a group will be assigned to the same tuple in the coreset, i.e.,
∀𝑘 ∈ 𝐺𝑖 , 𝜙\ (𝑘) = 𝑗 .

So far, the deductions we have discussed only consider the case
for a particular \ . Obviously, it is prohibitively expensive to explore
every possible \ . Next, we illustrate how to bound the gradient
approximation error for the parameter space 𝜗 .

4.2 Upper Bound for the Parameter Space 𝜗 and
Groups

Fortunately, it has been proved in recent works [5, 22, 39] that for
convex ML algorithms, e.g., linear regression, logistic regression,
the normed gradient dierence between tuples can be eciently
bounded by:

∀𝑖, 𝑗,max
\ ∈𝜗

‖∇𝑙𝑖 (\) − ∇𝑙 𝑗 (\)‖ ≤ max
\ ∈𝜗

O(‖\ ‖) · ‖x𝑖 − x𝑗 ‖ (7)

where ‖x𝑖 −x𝑗 ‖ denotes the Euclidean distance between the feature
vectors of two tuples. Since O(‖\ ‖) is a constant, we can conclude
that the gradient approximation error can be bounded in-
dependent of the optimization problem in practice, i.e., any
particular \ . Thus, based on the results in Eq. 6, we can get:

max
\ ∈𝜗

𝑔∑︁
𝑖=1

|𝐺𝑖 | min
𝑐 𝑗 ∈𝐶

max
𝑘∈𝐺𝑖

‖∇𝑙+
𝑘
(\) − ∇𝑙+

𝛾 (𝑗) (\)‖

≤
𝑔∑︁
𝑖=1

|𝐺𝑖 | min
𝑐 𝑗 ∈𝐶

max
𝑘∈𝐺𝑖

max
\ ∈𝜗

‖∇𝑙+
𝑘
(\) − ∇𝑙+

𝛾 (𝑗) (\)‖

≤ 𝑐︸︷︷︸
𝑐𝑜𝑛𝑠𝑡

·
𝑔∑︁
𝑖=1

|𝐺𝑖 | min
𝑐 𝑗 ∈𝐶

max
𝑘∈𝐺𝑖

‖x+
𝑘
− x+

𝛾 (𝑗) ‖

(8)

Feature similarity. For ease of representation, we use similarity
𝑠 𝑗𝑖 = 1−𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 (max𝑘∈𝐺𝑖

‖x+
𝑘
−x+

𝛾 (𝑗) ‖) to denote the minimum
similarity of feature vectors between 𝑐 𝑗 ∈ 𝐶 and tuples in group
G𝑖 .

Obviously, the minimization of min𝑐 𝑗 ∈𝐶 max𝑘∈𝐺𝑖
‖x+
𝑘
− x+

𝛾 (𝑗) ‖
is equivalent to the maximization of max𝑐 𝑗 ∈𝐶 𝑠 𝑗𝑖 .

Therefore, the gradient approximation error can be bounded by∑𝑔
𝑖=1 |𝐺𝑖 |max𝑐 𝑗 ∈𝐶 𝑠 𝑗𝑖 .
Note that Eq. 7 holds for tuples with the same label [5, 22]. Hence,

we need to select subsets of coresets for tuples with dierent labels
and combine them. For example, given a binary classication task
(30% of label 0 and 70% with label 1), to select a coreset with size 𝐾 ,
we separately select a coreset of size 30%𝐾 for tuples with label 0
and another coreset of size 70%𝐾 for tuples with label 1, and then
merge them. For regression tasks, we will cluster tuples with similar
labels, select subsets of coresets for these clusters and merge them.

Problem (GGEM). The problem shown in Eq. 2 can be converted to
the group-based gradient approximation error minimization
(GGEM) problem as follows:

𝐶∗ = argmax
𝐶⊆𝑇 +

𝑔∑︁
𝑖=1

|𝐺𝑖 | max
𝑐 𝑗 ∈𝐶

𝑠 𝑗𝑖 , s.t. |𝐶 | ≤ 𝐾 (9)

At a high level, when 𝑇 + = 𝑇 ⊲⊳ 𝑇1 ⊲⊳ · · · ⊲⊳ 𝑇𝑚 is too large to
compute the coreset, the GGEM problem is to eciently select an
optimal coreset 𝐶∗ such that the tuples in 𝐶∗ and their associated
weights can well approximate the full gradient in 𝑇 +, by grouping
𝑇 + and distributing the computation to multiple tables based on
the groups. In § 5, we will show how to compute the partial feature
similarity 𝑠 𝑗𝑖 eciently without the fully materialized𝑇 +. Next, we
will prove that even if 𝑠 𝑗𝑖 is known, GGEM problem is NP-hard. We
will also discuss its submodular property, based on which a greedy
algorithm will be designed in § 5.

Theorem 1. The GGEM problem is NP-hard.

Proof. We start the proof by considering a special case of GGEM
problem where ∀𝑖 ∈ [1, 𝑔], |𝐺𝑖 | = 1. Thus, the number of groups 𝑔
equals to the number of tuples 𝑁 . Therefore, the problem becomes
𝐶∗ = argmax

𝐶⊆𝑇 +

∑𝑁
𝑖=1max𝑐 𝑗 ∈𝐶 𝑠 𝑗𝑖 = argmin

𝐶⊆𝑇 +

∑𝑁
𝑖=1min𝑐 𝑗 ∈𝐶 ‖x+𝑖 −

x+
𝛾 (𝑗) ‖, |𝐶 | ≤ 𝐾 . Naturally, the K-medoid problem [19] can be re-
duced to the the special case and thus GGEM is NP-hard. �

Theorem 2. The GGEM problem has the submodular property.

Due to the space limitation, proof of submodular property is left
to the technical report [2].
Our scope. Note that we focus on the convex problems trained with
gradient descent because for such problems, the gradient dierence
can be bounded by the dierence between feature vectors. In this
situation, regardless of any convex ML algorithm or parameter \ ,
RECON can select the coreset without training in advance.

4.3 Connection between Groups of the Single
Augmented Table and Multiple Tables

As mentioned in § 3.3, the joined result 𝑇 + is generally large in
scale, which makes it inecient to directly select coreset over 𝑇 +.
To address this, our key idea is to divide the large-scale𝑇 + into some
disjoint groups (like the Groupby), each of which contains tuples
that have the same attribute values over one or more predened
attributes. In this way, the gradient computation over tuples in 𝑇 +

can be pushed down as a pre-computation step in the corresponding
groups of each single table respectively, and further bounded by
aggregating the results from multiple tables eciently.
Remark. In this paper, we consider the join type that introduces
redundancy in the data, including both tuple redundancy and fea-
ture redundancy [14, 29] (e.g., PK-FK, one (many)-to-many joins).
For example, considering 𝑅 = 𝑆 ⊲⊳ 𝑇 , for table 𝑆 , the tuple ratio is
denoted by 𝑛𝑅

𝑛𝑆
and feature ratio is 𝑑𝑅

𝑑𝑆
, where 𝑛 represents the num-

ber of tuples and 𝑑 represents the number of features. We assume
that the tuple ratio and the feature ratio are larger than 1.

5 RECON ALGORITHM
Theory 2 in § 4, i.e., the GGEM problem has the submodular property,
tells us that we can use a greedy algorithm with the approximate
ratio (1− 1

𝑒) to solve the problem of coreset selectionwithout joining
multiple tables. In what follows, wewill rst overview the algorithm
in § 5.1, followed by discussing two important components of the
algorithm in § 5.2 and § 5.3 respectively.

5.1 Algorithm Overview

Algorithm. Algorithm 2 takes the base table𝑇 , a set T of tables to
be augmented and the coreset size 𝐾 (can be specied by the user)
as input, greedily adds the tuple that brings about the largest utility
improvement into the coreset such that a near-optimal coreset is
nally output. Note that 𝑇 + denotes the result of joining all above
tables together, which will not be materialized.

It rst pre-computes the feature vector dierence between every
two tuples in each table, so as to bound the gradients (line 1). Next,
it iteratively adds one tuple to the coreset at a time (the rst loop
in lines 3-12). At each iteration, the tuple with the largest utility

Algorithm 2: RECON Algorithm
Input: The train data𝑇 , T = {𝑇1,𝑇2, ...,𝑇𝑚 }, coreset size 𝐾 .
Output: A coreset𝐶 ⊆ 𝑇 +, weight𝑊 = {𝑤𝑗 }, |𝐶 | = |𝑊 | = 𝐾 .
Pre-compute table-wise partial feature similarity dierence1

𝐷+ = {𝑑ℎ
𝑖 𝑗
|∀𝑇ℎ ∈ T ∪ {𝑇 }, ∀𝑡ℎ

𝑖
, 𝑡ℎ

𝑗
∈ 𝑇ℎ, 𝑑ℎ𝑖 𝑗 = ‖xℎ

𝑖
− xℎ

𝑗
‖ }.

𝐶 = ∅;2

while |𝐶 | < 𝐾 do3

Sample a subset S from𝑇 + using𝑇 and T;4

for each tuple 𝑡 𝑗 ∈ S do5

𝑈 (𝐶 ∪ {𝑡 𝑗 }) = 0;6

for each group G𝑖 ∈ G do7

Compute 𝑠 𝑗𝑖 by aggregating 𝑑ℎ
𝑖′ 𝑗′ ∈ 𝐷

+ from dierent8

tables;
𝑈 (𝐶 ∪ {𝑡 𝑗 }) += |𝐺 (𝑖) |max𝑐 𝑗 ∈𝐶∪{𝑡 𝑗 } 𝑠 𝑗𝑖 ;9

𝑈 (𝑡 𝑗 |𝐶) = 𝑈 (𝐶 ∪ {𝑡 𝑗 }) −𝑈 (𝐶) ;10

𝑡∗ = argmax𝑡 𝑗 ∈S𝑈 (𝑡 𝑗 |𝐶) ;11

Add 𝑡∗ to𝐶 ;12

for j = 1 to |𝐶 | do13

𝑤𝑗 =
∑𝑔

𝑖=1 |𝐺 (𝑖) |I[𝑗 = argmax𝑐 𝑗′∈𝐶 𝑠 𝑗′𝑖]14

return𝐶,𝑊 ;15

among 𝑇 + will be selected (line 11). However, it is rather time-
consuming to iterate 𝑇 +, and thus we can sample a set S of joined
tuples and select one from them (the second for loop in lines 5-
10). Afterwards, to compute the utility of each tuple 𝑡 𝑗 ∈ S, the
third loop (lines 7-9) iterates each group G𝑖 , computes the feature
similarity 𝑠 𝑗𝑖 (line 8), reconsiders whether tuples in G𝑖 should be
assigned to 𝑡 𝑗 , and updates the utility value (line 9). In short, we
can derive the coreset 𝐶 by repeatedly sampling tuples, computing
their utilities, and select the best one as a member of the coreset.
Finally, we also have to assign each 𝑐 𝑗 ∈ 𝐶 a weight𝑤 𝑗 .

Algorithm 2 consists of the following four key components.
[Component Ê: Partial feature similarity pre-computation.] As
shown in line 1, we rst compute the similarity of partial feature
vectors in each individual table, in order to bound the gradient
based on Eq. 7. This step is easy to implement but rather important.
The motivation and the details will be introduced in § 5.2.
[Component Ë: Joined tuples sampling.] We use the sampling
method proposed in [58] to sample a set S ⊂ 𝑇 + of tuples as
candidates (line 4). Although𝑇 + will not be materialized, [58] guar-
antees that these sampled tuples are uniformly sampled from 𝑇 +.
Thus, there still has an approximate ratio 1 − 1

𝑒 − 𝜖 for the greedy
algorithm, as discussed in § 3.2, where |S| = (𝑁 /𝐾) · 𝑙𝑜𝑔(1/𝜖).
[Component Ì: Feature similarity computation.] During the above
process, computing 𝑠 𝑗𝑖 is challenging because we do not have𝑇 +. To
address this , the high level idea is to aggregate the pre-computation
results in Component Ê along with the join keys, which will be
introduced in § 5.3.
[ComponentÍ:Weight computation.] As shown in line 14,𝑤 𝑗 equals
to the sum of the groups that are assigned to 𝑐 𝑗 timing the group
size, because the tuples within a group will be assigned a single
tuple in the coreset.

5.2 Partial Feature Similarity Pre-computation
As discussed above, to solve the GGEM problem, it is signicant
to compute the feature similarity 𝑠 𝑗𝑖 , i.e., the minimum similarity

CCoreset Pre-compute partial gradient difference
Compute

TT1 T2 [[= |{z} <latexit sha1_base64="QyV2Em5ZrTckfklNDjqgWjdcSXE=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cK9gPaUDababt0s4m7m0IJ/R1ePCji1R/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3xqg0j+WjmSToR3QgeZ8zaqzkd1MZogoUZZhNe+WKW3XnIKvEy0kFctR75a9uGLM0QmmYoFp3PDcxfkaV4UzgtNRNNSaUjegAO5ZKGqH2s/nRU3JmlZD0Y2VLGjJXf09kNNJ6EgW2M6JmqJe9mfif10lN/8bPuExSg5ItFvVTQUxMZgmQkCtkRkwsoUxxeythQ2ojMDankg3BW355lTQvqt5l9erhslK7zeMowgmcwjl4cA01uIc6NIDBEzzDK7w5Y+fFeXc+Fq0FJ585hj9wPn8AStyScw==</latexit> |{z} <latexit sha1_base64="QyV2Em5ZrTckfklNDjqgWjdcSXE=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cK9gPaUDababt0s4m7m0IJ/R1ePCji1R/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3xqg0j+WjmSToR3QgeZ8zaqzkd1MZogoUZZhNe+WKW3XnIKvEy0kFctR75a9uGLM0QmmYoFp3PDcxfkaV4UzgtNRNNSaUjegAO5ZKGqH2s/nRU3JmlZD0Y2VLGjJXf09kNNJ6EgW2M6JmqJe9mfif10lN/8bPuExSg5ItFvVTQUxMZgmQkCtkRkwsoUxxeythQ2ojMDankg3BW355lTQvqt5l9erhslK7zeMowgmcwjl4cA01uIc6NIDBEzzDK7w5Y+fFeXc+Fq0FJ585hj9wPn8AStyScw==</latexit> |{z} <latexit sha1_base64="QyV2Em5ZrTckfklNDjqgWjdcSXE=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cK9gPaUDababt0s4m7m0IJ/R1ePCji1R/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3xqg0j+WjmSToR3QgeZ8zaqzkd1MZogoUZZhNe+WKW3XnIKvEy0kFctR75a9uGLM0QmmYoFp3PDcxfkaV4UzgtNRNNSaUjegAO5ZKGqH2s/nRU3JmlZD0Y2VLGjJXf09kNNJ6EgW2M6JmqJe9mfif10lN/8bPuExSg5ItFvVTQUxMZgmQkCtkRkwsoUxxeythQ2ojMDankg3BW355lTQvqt5l9erhslK7zeMowgmcwjl4cA01uIc6NIDBEzzDK7w5Y+fFeXc+Fq0FJ585hj9wPn8AStyScw==</latexit>x+
j [1]

<latexit sha1_base64="roJvpcyBenWDfjOhfHAB//h0Fsc=">AAADQ3icjVLLSsNAFD2N7/pqdekmWARBKIkouhTduFSwKtRakjjVaF4kEx8UP8Wtfokf4R8o7sSt4Jkxgg98TEh759xzzp07uW4S+Jm0rLuS0dPb1z8wOFQeHhkdG69UJ7azOE890fDiIE53XScTgR+JhvRlIHaTVDihG4gd92RN5XdORZr5cbQlLxLRCp3DyO/4niMJtSvVvdCRR26ne37ZPt6fa9qtdqVm1S29zO+BXQQ1FGsjrpZGsYcDxPCQI4RABMk4gIOMTxM2LCTEWugSSxn5Oi9wiTK1OVmCDIfoCX8PuWsWaMS98sy02mOVgG9KpYkZamLyUsaqmqnzuXZW6E/eXe2pznbBf7fwColKHBH9S/fO/K9O9SLRwbLuwWdPiUZUd17hkutbUSc3P3Ql6ZAQU/EB8yljTyvf79nUmkz3ru7W0fl7zVSo2nsFN8fDr925dP35i6j8X4yEZ+zw9Kqa4pU5TfbX2fkebM/X7YX64uZCbWW1mKtBTGEas5ydJaxgHRtosNIZrnCNG+PWeDSejOc3qlEqNJP4tIyXV2iUrK8=</latexit>

x+
j [0]

<latexit sha1_base64="StGsNIHIQb42pcnnMLVNLmmPG+o=">AAADQ3icjVLLSsNAFD2N7/pqdekmWARBKKkouhTduFSwrVBrSeJUo3mRTHxQ/BS3+iV+hH+guBO3gmfGCD7wMSHtnXPPOXfu5Dqx76XSsu4KRl//wODQ8EhxdGx8YrJUnmqkUZa4ou5GfpTsOnYqfC8UdelJX+zGibADxxdN52RD5ZunIkm9KNyRF7FoB/Zh6HU915aEOqXyXmDLI6fbO7/sHO8vtKx2p1SxqpZe5veglgcV5GsrKhfGsYcDRHCRIYBACMnYh42UTws1WIiJtdEjljDydF7gEkVqM7IEGTbRE/4ectfK0ZB75ZlqtcsqPt+EShNz1ETkJYxVNVPnM+2s0J+8e9pTne2C/07uFRCVOCL6l+6d+V+d6kWii1Xdg8eeYo2o7tzcJdO3ok5ufuhK0iEmpuID5hPGrla+37OpNanuXd2trfP3mqlQtXdzboaHX7tz6PrzF1H5vxgxz9jl6VU1xStymmpfZ+d70Fis1paqy9tLlbX1fK6GMYNZzHN2VrCGTWyhzkpnuMI1boxb49F4Mp7fqEYh10zj0zJeXgFlxqyu</latexit>

x+
j [2]

<latexit sha1_base64="Q9RBkwfXaWT7hPnmFrA65VUg1FI=">AAADQ3icjVLLSsNAFD2N7/pqdekmWARBKKkouhTduFSwrVBrSeJUo3mRTHxQ/BS3+iV+hH+guBO3gmfGCD7wMSHtnXPPOXfu5Dqx76XSsu4KRl//wODQ8EhxdGx8YrJUnmqkUZa4ou5GfpTsOnYqfC8UdelJX+zGibADxxdN52RD5ZunIkm9KNyRF7FoB/Zh6HU915aEOqXyXmDLI6fbO7/sHO8vtBbbnVLFqlp6md+DWh5UkK+tqFwYxx4OEMFFhgACISRjHzZSPi3UYCEm1kaPWMLI03mBSxSpzcgSZNhET/h7yF0rR0PulWeq1S6r+HwTKk3MURORlzBW1Uydz7SzQn/y7mlPdbYL/ju5V0BU4ojoX7p35n91qheJLlZ1Dx57ijWiunNzl0zfijq5+aErSYeYmIoPmE8Yu1r5fs+m1qS6d3W3ts7fa6ZC1d7NuRkefu3OoevPX0Tl/2LEPGOXp1fVFK/Iaap9nZ3vQWOxWluqLm8vVdbW87kaxgxmMc/ZWcEaNrGFOiud4QrXuDFujUfjyXh+oxqFXDONT8t4eQVrYqyw</latexit>

dkij = kxk
i � xk

j k
<latexit sha1_base64="9f2tO4e+S53wIwm/1EY2iYpdLK0=">AAADbXicjVJdTxNBFD3tqmAVLRKfIGZjY/TFZmsgmhgToi8+QmILCcVmdzuFofuV2Vkjafpj/DW86qP/AJ78C547LAlKEGez7Z1zzzl37uyNikSXNgh+Nprerdt3Fhbvtu7dX3rwsL38aFDmlYlVP86T3OxGYakSnam+1TZRu4VRYRolaieafpD8zhdlSp1nn+xxofbT8CDTEx2HltCo/XY8mumj+eep/84fJgNl7DAN7WE0mX2dMyOJl/5lyHGHRpijdifoBm75V4NeHXRQr618ubGEIcbIEaNCCoUMlnGCECWfPfQQoCC2jxkxw0i7vMIcLWorshQZIdEpfw+426vRjHvxLJ06ZpWEr6HSxzNqcvIMY6nmu3zlnAW9znvmPOVsx/yPaq+UqMUh0Zt0F8z/1UkvFhO8cT1o9lQ4RLqLa5fK3Yqc3L/UlaVDQUziMfOGceyUF/fsO03pepe7DV3+1DEFlX1ccyuc/bO7iK7XfxHJ38QoeMYJTy/VhNfiNPX+np2rweBVt7fe3dhe72y+r+dqEat4ihecndfYxEdsoc9K33CC7/jR/OU99ta8J+fUZqPWrOCP5T3/DVoauqY=</latexit>

x0
3

<latexit sha1_base64="pES8uUcLvEs3UyZLWmKxDjlctkk=">AAADPnicjVLLSsNAFD2N7/rWpZtgEVyVVCu6LLpxqWBVqFWSONVgXkwmohT/w61+ib/hD4guxK1Lz4wRfFB1Qto7555z7tzJ9dIwyJTj3Jesvv6BwaHhkfLo2PjE5NT0zG6W5NIXTT8JE7nvuZkIg1g0VaBCsZ9K4UZeKPa8sw2d3zsXMguSeEddpqIduSdx0Al8VxE6PIhcdep1uhdXR8uHztFUxak6Ztk/g1oRVFCsrWS6NI4DHCOBjxwRBGIoxiFcZHxaqMFBSqyNLjHJKDB5gSuUqc3JEmS4RM/4e8Jdq0Bj7rVnZtQ+q4R8JZU2FqhJyJOMdTXb5HPjrNFe3l3jqc92yX+v8IqIKpwS/Uv3wfyvTvei0MGa6SFgT6lBdHd+4ZKbW9Entz91peiQEtPxMfOSsW+UH/dsG01metd365r8o2FqVO/9gpvj6dfuPLr2/iI6/xcj5Rk7PL2upnllTlPt++z8DHaXqrV6dWW7XmmsF3M1jDnMY5Gzs4oGNrGFJitJXOMGt9ad9WA9Wy/vVKtUaGbxZVmvbysPq0U=</latexit>

x2
2<latexit sha1_base64="AD7fk/B2vc3L9hDEhKx0gBN//rc=">AAADPnicjVLLSsNAFD2Nr1pfVZdugkVwVdKi6FJ047KCVaE+SOJUg3kxmYhS/A+3+iX+hj8guhC3Lj0zRlCLjwlp75x7zrlzJ9dLwyBTjnNfsgYGh4ZHyqOVsfGJyanq9MxOluTSF20/CRO557mZCINYtFWgQrGXSuFGXih2vbMNnd89FzILknhbXabiIHJP4qAb+K4idLgfuerU6/Yuro6ah82jas2pO2bZ/UGjCGooViuZLk1gH8dI4CNHBIEYinEIFxmfDhpwkBI7QI+YZBSYvMAVKtTmZAkyXKJn/D3hrlOgMffaMzNqn1VCvpJKGwvUJORJxrqabfK5cdboT94946nPdsl/r/CKiCqcEv1L98H8r073otDFqukhYE+pQXR3fuGSm1vRJ7c/daXokBLT8THzkrFvlB/3bBtNZnrXd+ua/KNhalTv/YKb4+nX7jy6/vxFdP4vRsozdnl6XU3zKpymxvfZ6Q92mvXGUn15a6m2tl7MVRlzmMciZ2cFa9hEC21WkrjGDW6tO+vBerZe3qlWqdDM4suyXt8ALdqrRg==</latexit>

x2
1<latexit sha1_base64="PTMiYHvGFYUsYwCB+70897tF1ug=">AAADPnicjVLLSsNAFD2N7/rWpZtgEVyVRBRdim5cKlgV1JYkTttgXkwmohT/w61+ib/hD4guxK1Lz4wRfOBjQto7555z7tzJ9bMozJXj3FWsvv6BwaHhkero2PjE5NT0zF6eFjIQjSCNUnnge7mIwkQ0VKgicZBJ4cV+JPb9002d3z8TMg/TZFddZOI49jpJ2A4DTxFqHsWe6vrt3vlly20utaZqTt0xy/4euGVQQ7m20+nKOI5wghQBCsQQSKAYR/CQ8zmECwcZsWP0iElGockLXKJKbUGWIMMjesrfDneHJZpwrz1zow5YJeIrqbSxQE1KnmSsq9kmXxhnjf7k3TOe+mwX/PdLr5ioQpfoX7p35n91uheFNtZMDyF7ygyiuwtKl8Lcij65/aErRYeMmI5PmJeMA6N8v2fbaHLTu75bz+QfDFOjeh+U3AKPv3bn0/XnL6LzfzEynrHN0+tqmlflNLlfZ+d7sLdUd5frKzvLtfWNcq6GMYd5LHJ2VrGOLWyjwUoSV7jGjXVr3VtP1vMb1aqUmll8WtbLKysLq0U=</latexit>x1

1<latexit sha1_base64="5vHkktc//tEJsUgJcx0A058Rq2k=">AAADPnicjVLLSsNAFD2N7/rWpZtgEVyVRBRdim5cKlgV6oMkTjWYF5OJWEr/w61+ib/hD4guxK1Lz4wp+MDHhLR3zj3n3LmT62dRmCvHua9Yff0Dg0PDI9XRsfGJyanpmb08LWQgGkEapfLA93IRhYloqFBF4iCTwov9SOz7F5s6v38pZB6mya5qZ+Io9s6SsBUGniJ0fBh76txvda66J+6xezJVc+qOWfb3wC2DGsq1nU5XxnGIU6QIUCCGQALFOIKHnE8TLhxkxI7QISYZhSYv0EWV2oIsQYZH9IK/Z9w1SzThXnvmRh2wSsRXUmljgZqUPMlYV7NNvjDOGv3Ju2M89dna/PdLr5iowjnRv3Q95n91uheFFtZMDyF7ygyiuwtKl8Lcij65/aErRYeMmI5PmZeMA6Ps3bNtNLnpXd+tZ/KPhqlRvQ9KboGnX7vz6frzF9H5vxgZz9ji6XU1zatymtyvs/M92Fuqu8v1lZ3l2vpGOVfDmMM8Fjk7q1jHFrbRYCWJa9zg1rqzHqxn6+WdalVKzSw+Lev1DSg+q0Q=</latexit>

x1
2<latexit sha1_base64="R5XdCWbhoufVwEstyB/GqdX4n3U=">AAAC0XicjVHLSsNAFD2Nr1pfVZdugkVwVZJS0WXRjcuK9gGtLUk6bUPzYjIRSymIW3/Arf6U+Af6F94ZU1CL6IQkZ86958zce+3Ic2NhGK8ZbWFxaXklu5pbW9/Y3Mpv79TjMOEOqzmhF/KmbcXMcwNWE67wWDPizPJtjzXs0ZmMN24Yj90wuBLjiF371iBw+65jCaI6bd8SQ7s/uZ12Sx2zmy8YRUMtfR6YKSggXdUw/4I2egjhIIEPhgCCsAcLMT0tmDAQEXeNCXGckKviDFPkSJtQFqMMi9gRfQe0a6VsQHvpGSu1Q6d49HJS6jggTUh5nLA8TVfxRDlL9jfvifKUdxvT3069fGIFhsT+pZtl/lcnaxHo40TV4FJNkWJkdU7qkqiuyJvrX6oS5BARJ3GP4pywo5SzPutKE6vaZW8tFX9TmZKVeyfNTfAub0kDNn+Ocx7US0WzXDy6KBcqp+mos9jDPg5pnseo4BxV1Mib4xFPeNYutbF2p91/pmqZVLOLb0t7+AAhLJTt</latexit>

x1
3

<latexit sha1_base64="nOgfIt6CChmnUw+cGjl37XwVls4=">AAAC0XicjVHLSsNAFD2Nr/quunQTLIKrkmhFl0U3LivaB/RFkk7b0LyYTMRSCuLWH3CrPyX+gf6Fd8YU1CI6IcmZc+85M/deO/LcWBjGa0abm19YXMour6yurW9s5ra2q3GYcIdVnNALed22Yua5AasIV3isHnFm+bbHavbwXMZrN4zHbhhci1HEWr7VD9ye61iCqHbTt8TA7o1vJ52jttnJ5Y2CoZY+C8wU5JGucph7QRNdhHCQwAdDAEHYg4WYngZMGIiIa2FMHCfkqjjDBCukTSiLUYZF7JC+fdo1UjagvfSMldqhUzx6OSl17JMmpDxOWJ6mq3iinCX7m/dYecq7jehvp14+sQIDYv/STTP/q5O1CPRwqmpwqaZIMbI6J3VJVFfkzfUvVQlyiIiTuEtxTthRymmfdaWJVe2yt5aKv6lMycq9k+YmeJe3pAGbP8c5C6qHBbNYOL4s5ktn6aiz2MUeDmieJyjhAmVUyJvjEU941q60kXan3X+maplUs4NvS3v4ACOOlO4=</latexit>

x1
4<latexit sha1_base64="39ZQ+Axqfp1yYgCwMWe9wdleBCk=">AAAC0XicjVHLSsNAFD2Nr1pfVZdugkVwVRKp6LLoxmVF+4C+SNJpG5oXk4lYSkHc+gNu9afEP9C/8M6YglpEJyQ5c+49Z+bea0eeGwvDeM1oC4tLyyvZ1dza+sbmVn57pxaHCXdY1Qm9kDdsK2aeG7CqcIXHGhFnlm97rG6PzmW8fsN47IbBtRhHrO1bg8Dtu44liOq0fEsM7f7kdtotdcxuvmAUDbX0eWCmoIB0VcL8C1roIYSDBD4YAgjCHizE9DRhwkBEXBsT4jghV8UZpsiRNqEsRhkWsSP6DmjXTNmA9tIzVmqHTvHo5aTUcUCakPI4YXmaruKJcpbsb94T5SnvNqa/nXr5xAoMif1LN8v8r07WItDHqarBpZoixcjqnNQlUV2RN9e/VCXIISJO4h7FOWFHKWd91pUmVrXL3loq/qYyJSv3Tpqb4F3ekgZs/hznPKgdFc1S8fiyVCifpaPOYg/7OKR5nqCMC1RQJW+ORzzhWbvSxtqddv+ZqmVSzS6+Le3hAyXwlO8=</latexit>

cj
<latexit sha1_base64="l1EnCOW13e9JehDTo+ggK66QN54=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRKp6LLopsuK9gFaSjKd1rFpEpKJUorgD7jVTxP/QP/CO+MU1CI6IcmZc+85M/dePw5EKh3nNWfNzS8sLuWXCyura+sbxc2tZhplCeMNFgVR0va9lAci5A0pZMDbccK9kR/wlj88VfHWLU9SEYUXchzzzsgbhKIvmCeJOmfdm26x5JQdvexZ4BpQgln1qPiCK/QQgSHDCBwhJOEAHlJ6LuHCQUxcBxPiEkJCxznuUSBtRlmcMjxih/Qd0O7SsCHtlWeq1YxOCehNSGljjzQR5SWE1Wm2jmfaWbG/eU+0p7rbmP6+8RoRK3FN7F+6aeZ/daoWiT6OdQ2Caoo1o6pjxiXTXVE3t79UJckhJk7hHsUTwkwrp322tSbVtaveejr+pjMVq/bM5GZ4V7ekAbs/xzkLmgdlt1I+PKuUqidm1HnsYBf7NM8jVFFDHQ3yHuART3i2alZoZdbdZ6qVM5ptfFvWwwdl+ZBN</latexit>

Figure 6: Partial feature similarity pre-computation.

of feature vectors between 𝑐 𝑗 and tuples in the group G𝑖 , so as to
bound the gradient dierence. The computation is highly related
to the Euclidean distance between two feature vectors, as shown in
Eq. 8. Although we can obtain one vector of 𝑐 𝑗 through sampling,
the other one in the group is not available because we do not want
to materialize 𝑇 + and iterate it. Fortunately, each feature vector
in 𝑇 + can be represented by the concatenation of (𝑚 + 1) sub-
vectors from these 𝑚 candidate tables as well as the base table,
i.e., x+

𝑖
= [x+

𝑖
[0], x+

𝑖
[1], ..., x+

𝑖
[𝑚]], where x+

𝑖
[0] denotes the base

table part of feature vector of 𝑡+
𝑖
. Intuitively, to capture the feature

dierence, we can rst capture the partial feature similarity inside
each table, and then aggregate from multiple tables to compute 𝑠 𝑗𝑖 .

Hence, we push down the computation to each individual table
as a pre-computation step, which accelerates the coreset selection
much. To be specic, for each table𝑇𝑘 , the feature vector dierence
of any tuple pair, i.e., 𝑑ℎ

𝑖 𝑗
= ‖xℎ

𝑖
− xℎ

𝑗
‖ is computed.

In Figure 6, suppose that the tuples colored green from multiple
tables will form a group G2. In pre-computation, ‖x+

𝑗
[1] − x12‖,

‖x+
𝑗
[1] − x13‖, ‖x

+
𝑗
[0] − x03‖, ‖x

+
𝑗
[2] − x21‖ and ‖x+

𝑗
[2] − x22‖ have

been computed when we want to compute 𝑠12, which accelerates
the coreset selection much because we do not need to compute
the dierences over the large scale 𝑇 +. Note that we are not going
to compute the feature similarity between every two tuples in 𝑇 +.
Recap that in § 4.2, the similarity 𝑠 𝑗𝑖 to be computed, i.e., 𝑠 𝑗𝑖 =

1 − 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 (max𝑘∈𝐺𝑖
‖x+
𝑘
− x+

𝛾 (𝑗) ‖) is to denote the minimum
similarity of feature vectors between 𝑐 𝑗 ∈ 𝐶 and tuples in group
G𝑖 . Once 𝑠 𝑗𝑖 can be computed, we can use it to bound the gradient
approximation error, so in the next section, we will discuss how to
aggregate pre-computed partial results to derive 𝑠 𝑗𝑖 .

5.3 Gradient Aggregation for Feature Similarity
(𝑠 𝑗𝑖) Computation

Next, we describe, for a given 𝑐 𝑗 ∈ 𝐶 , how to eciently compute 𝑠 𝑗𝑖 ,
which is equivalent to compute the dierence, i.e., max𝑘∈𝐺𝑖

‖x+
𝑘
−

x+
𝛾 (𝑗) ‖ for all the groups G𝑖 ∈ G using a dynamic programming
(DP) algorithm. We mainly illustrate the algorithm using a concrete
example as shown in Figure 7. Before that, we rst introduce some
necessary notations.

Recap that in § 5.2, each sampled tuple x+
𝛾 (𝑗) can be represented

by concatenating𝑚+1 sub-vectors from dierent tables respectively.
Hence, for each subvector x+

𝛾 (𝑗) [ℎ], ℎ ∈ [0,𝑚], we use 𝛾ℎ (𝑗) to
denote the index of x+

𝛾 (𝑗) [ℎ] in table𝑇ℎ . In this way, for all tuples in

each table𝑇𝑢 , 𝑑ℎ𝛾ℎ (𝑗),𝑢 = ‖xℎ
𝛾ℎ (𝑗) −x

ℎ
𝑢 ‖ = ‖x+ [ℎ] −xℎ𝑢 ‖,𝑢 ∈ [1, |𝑇𝑢 |].

Besides, we model these tables as a tree structure, where the root is
the table that we group on. We use 𝐽ℎ to denote the set of children
table index of𝑇ℎ . 𝑅ℎ𝑢 denotes the intermediate result of 𝑡ℎ𝑢 (The 𝑢-th

tuple in 𝑇ℎ) joining with all the descendants of 𝑇ℎ . Next, we use
two examples to clarify these.

Example 4. [Join tree] Suppose that A = {𝐴0}, we have a tree in
Figure 7, where 𝑇0 is the root, and 𝑇1,𝑇3 are leaves. Thus, 𝐽0 = {1, 2},
𝐽2 = {3} and 𝐽1 = 𝐽3 = ∅. Besides, 𝑇0 and 𝑇1 can be joined on
attribute 𝐴2, where values with the same color can be joined together.
For example, the rst two tuples in 𝑇0 can be joined with the rst
tuple in 𝑇1. Based on that, 𝑅21 denotes the result (i.e., two tuples) of
𝑡21 joining with 𝑇3 (the descendant of 𝑇2). 𝑅21 denotes the result (i.e.,
three tuples) of 𝑡11 joining with 𝑇1,𝑇2 and 𝑇3 (the descendants of 𝑇0).

[Groups] Suppose that we want to group on attribute 𝐴0 (i.e., the
group key). Clearly, both𝑇0 and𝑇 + will have 3 groups G1, G2 and G3.
For example, the rst group G1 in 𝑇0 has two tuples, but after joining,
there will be six tuples in the group.

Our goal. Given the join tree, group key and pre-computation
results (§ 5.2), the goal of our DP algorithm is to compute the
feature similarity 𝑠 𝑗𝑖 between each group G𝑖 and the tuple 𝑐 𝑗 in the
coreset, by aggregating the results from multiple tables along with
the join keys, without materializing 𝑇 +.

Key observation. The feature similarity computation has the op-
timal substructure. Hence, at a high level, we can group within
each individual table on the attributes to be joined, and then use
a dynamic programming algorithm to compute the 𝑠 𝑗𝑖 across the
join relations. Taking the G1 as an example, that is, we want to
get 𝑠11 (the similarity/dierence between 𝑐1 and G1). For the two
tuples 𝑡01 (𝑡02), we have already known 𝑑0

𝛾0 (1),1 (𝑑
0
𝛾0 (1),2). Hence, if

we can compute the maximum dierence of feature vectors of tu-
ples that can join with 𝑡01 (𝑡02) from other tables, which serve as
the optimal substructure, we can add 𝑑0

𝛾0 (1),1 (𝑑
0
𝛾0 (1),2) to the corre-

sponding maximum dierence and output two values. Finally 𝑠11
can be computed by choosing the largest one from the two values.

Specically, to capture the join relations of tuples, except the base
table, for each table 𝑇ℎ , we group the tuples in 𝑇ℎ on the attribute
that serves as the key to join with𝑇ℎ ’s parent. We use 𝑃ℎ𝑣 to denote
the 𝑣-th group of tuples in 𝑇ℎ . For example, 𝑃21 includes the rst
two tuples in 𝑇2 and 𝑃32 just includes the last tuple in 𝑇3, as shown
in Figure 7. Note that for the base table, the groups are constructed
based on 𝐴0 rather than the join key because 𝑇0 is the root.

We use 𝑑𝑝 [𝑢,ℎ] to denote the maximum dierence between
tuples in 𝑅ℎ𝑢 and 𝑐 𝑗 ’s corresponding sub-vectors w.r.t. tuples in 𝑅ℎ𝑢 .
We then use 𝐷𝑃 [𝑣, ℎ] to denote the maximum 𝑑𝑝 value among the
𝑣-th group of𝑇ℎ , i.e., 𝐷𝑃 [𝑣, ℎ] = max

𝑡ℎ𝑢 ∈𝑃ℎ𝑣 𝑑𝑝 [𝑢,ℎ]. Thus, we have:

𝑑𝑝 [𝑢,ℎ] = 𝑑ℎ
𝛾ℎ (𝑗),𝑢 +

∑︁
ℎ′∈𝐽 (ℎ)

𝐷𝑃 [𝑣 ′, ℎ′] (10)

where 𝑣 ′ denotes the index of group in 𝑇ℎ′ that can join with 𝑡ℎ𝑢 .
Then we can compute 𝐷𝑃 [𝑖, 0], 𝑖 ∈ [1, 𝑔] following Eq. 10. Obvi-
ously, we can directly compute 𝑠 𝑗𝑖 based on 𝐷𝑃 [𝑖, 0].

For ease of discussion, here we just consider equi-join where
each tuple can join with at most one group of a table. We will
discuss how to support fuzzy join later in this section.

Let us illustrate the algorithm using an example to compute 𝑠11.

Example 5. [The DP algorithm] We run the DP algorithm from
bottom to up. Initially, we compute the 𝑑𝑝 values for all tuples in the

A5A4A3A2A1A0 A6

(T0)
A1

1.2
1.8

A0

aaa
aaa

1.0bbb

T

T1

A3

0.1
0.2

A2

T3

A6

0.6
0.4

A5

0.8

T2
A4

2.1
1.5

A2

0.9

A2

1.4ccc

A5

DP[1,3]=0.6 dp[1,3]=0.6

dp[2,3]=0.4
dp[3,3]=0.8

dp[1,1]=0.1

dp[2,1]=0.2

dp[1,2]=2.7

dp[2,2]=2.3

dp[3,2]=1.7

DP[2,3]=0.8

DP[1,1]=0.1

DP[2,1]=0.2
DP[1,2]=2.7

DP[2,2]=1.7

dp[1,0]=4.0
dp[2,0]=4.6
dp[3,0]=2.9
dp[4,0]=3.3

DP[1,0]=4.6

DP[3,0]=3.3

c1
<latexit sha1_base64="dA5B46s/1PKlQjMJhntqFCvCnr0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0wPpev1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1atVL+9rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwDuO42T</latexit>

DP[2,0]=2.9

{
{
{

Group-key Join-key

Join-key Join-key

Join-key

Join-key

Figure 7: An example of dynamic programming.

leaf nodes, i.e.,𝑇1 and𝑇3 in Figure 7. For example, to compute 𝑑𝑝 [1, 3],
since 𝐽 (3) = ∅, 𝑑𝑝 [1, 3] = 𝑑3

𝛾3 (1),1 = 0.6 following Eq. 10. Next we

consider how to compute 𝐷𝑃 [1, 3]. Group 𝑃31 consists of 𝑡31 and 𝑡32
as they have the same value on the join key attribute 𝐴5, so we can
compute 𝐷𝑃 [1, 3] = max(𝑑𝑝 [1, 3], 𝑑𝑝 [2, 3]) = 0.6. Thus, the largest
in the group (i.e., 𝑑𝑝 [1, 3]) will be propagated (marked as the bold
line) to its father relation (i.e., 𝑇2) for further computation. Then we
come to 𝑇2. Similarly, to compute 𝑑𝑝 [1, 2], considering Eq. 10 𝑑2

𝛾2 (1),1
is added rst. After that, since 𝐽 (2) = 3 and 𝑡21 joins with tuples
in 𝑃31 , 𝐷𝑃 [1, 3] will also be added to 𝑑𝑝 [1, 2]. Therefore, we obtain
𝑑𝑝 [1, 2] = 𝑑2

𝛾2,1 + 𝐷𝑃 [1, 3] = 2.1 + 0.6 = 2.7. After that, 𝐷𝑃 [1, 2] is
computed as max(𝑑𝑝 [1, 2], 𝑑𝑝 [2, 2]) = 2.7, which is then propagated
to the rst two tuples in 𝑇0 that join with tuples in 𝑃21 . Finally, we
come to 𝑇0. To compute 𝑑𝑝 [1, 0], 𝑑0

𝛾0 (1),1 is rst added to 𝑑𝑝 [1, 0]
as well. Since 𝐽 (0) = {1, 2}, 𝐷𝑃 [1, 1] and 𝐷𝑃 [1, 2] will be added to
𝑑𝑝 [1, 0]. Therefore, we can obtain 𝑑𝑝 [1, 0] = 𝑑0

𝛾0 (1),1 + 𝐷𝑃 [1, 1] +
𝐷𝑃 [1, 2] = 1.2 + 0.1 + 2.7 = 4.0. Finally, 𝐷𝑃 [1, 0] is computed as
𝐷𝑃 [1, 0] = max(𝑑𝑝 [1, 0], 𝑑𝑝 [2, 0]) = 4.6.

Complexity Analysis of Algorithm 2. Recap that |𝑇 + | = 𝑁 . For
ease of illustration, we use 𝑂 (𝑛) to denote the average size of each
single table, i.e.,𝑂 (|𝑇ℎ |) = 𝑂 (𝑛). Besides, we use𝐷 (𝑑) to denote the
number of feature dimensions of 𝑇 + (𝑇ℎ on average) respectively.
Next, we analyze the time complexity from two aspects, i.e., the
pre-computation and greedy algorithm with 3 loops.
Partial Feature Similarity Pre-computation. In this stage, we need to
pre-compute the dierence of feature vectors between every two
tuples in each table, so the time complexity is 𝑂 (𝑛2𝑑) when the
number of tables can be regarded as a constant.
Greedy Coreset Selection. To select the coreset 𝐶 , the greedy algo-
rithm repeats 𝐾 times. Each time a set of tuples S ⊂ 𝑇 + is sampled.
To get i.i.d. uniform samples, we use the exact weight algorithm
from Zhao et al. [58], which has no accept-reject step in the sam-
pling phase. After a pre-computation in 𝑂 (𝑛), we can get a sample
from 𝑇 + in 𝑂 (1) [51, 53, 58]. For each element 𝑡 𝑗 ∈ S, we need to
compute𝑈 (𝑡 𝑗 |𝐶), which involves the computation of 𝑠 𝑗𝑖 for every
group G𝑖 ∈ G using the DP algorithm. The complexity of DP is lin-
ear to the total sizes of relations, i.e.,𝑂 (|𝑇0 |+ |𝑇1 |+· · ·+|𝑇𝑚 |) = 𝑂 (𝑛).
For ease of representation, we use 𝑆 to denote |S|. Therefore, The
time complexity of this part is 𝑂 (𝐾 · |S| · 𝑛) = 𝑂 (𝑛𝐾𝑆).
Total Time Complexity. In summary, the total time complexity of
our approach is 𝑂 (𝑛2𝑑 + 𝑛𝐾𝑆).

To show the superiority of our method, we also illustrate the time
complexity of the SOTA single-table coreset selection algorithm

on 𝑇 +, if the join result is materialized. First, they compute feature
vector dierences between every two tuples in 𝑇 +, so as to bound
the gradient, leading to a time complexity of 𝑂 (𝑁 2𝐷). Afterwards,
to compute the utility of each tuple , their methods have to iterate
every tuple in 𝑇 +, leading to a time complexity of 𝑂 (𝐾 · 𝑆 · 𝑁) =
𝑂 (𝑁𝐾𝑆). In total, the time complexity is 𝑂 (𝑁 2𝐷 + 𝑁𝐾𝑆).

For feature-enrich ML, 𝑁 � 𝑛 always holds when various types
of joins exist. Thus, our method can much improve the eciency.

Discussion. For fuzzy join, each tuple 𝑡ℎ𝑢 may join with multiple
groups 𝑃ℎ

′
𝑣′ for ℎ

′ ∈ 𝐽 (ℎ) of a table. We can extend RECON to handle
this by changing the 𝐷𝑃 [𝑣 ′, ℎ′] in Eq. 10 into 𝑑𝑝 [𝑢,ℎ] = 𝑑ℎ

𝛾ℎ (𝑗),𝑢 +∑
ℎ′∈𝐽 (ℎ) max𝑣′∈𝑉 𝐷𝑃 [𝑣 ′, ℎ′], where 𝑉 represents all the groups in

𝑇ℎ′ that can join with 𝑡ℎ𝑢 . For the grouping key, if the attributes in
A specied by the user are distributed in multiple tables, we can
run our algorithm by randomly selecting a table from these tables
as the root and aggregating the results using the DP algorithm.

Note that the upper bound of the gradient dierence derived in
§ 4 only holds for points with similar labels. Thus, theoretically
we need to select subsets separately. The above analysis assumes
that all tuples correspond to same labels. However, in practice, data
has dierent labels. Therefore, data with a certain label generally
represents only a small fraction of the total data. The total amount
of calculation is much less than the above complexity.

Convergence Rate Analysis of Algorithm 2. In the eld of ML,
convergence rate reects how fast the machine learning algorithm
can nd the optimal parameters. The higher the convergence rate,
the fewer iterations the model needs to converge. Specically, we
can compute the convergence rate by comparing the parameter \
computed in the 𝑘-th and the (𝑘 + 1)-th iteration to the optimal
one. The detailed proof is left to the technical report [2].

As proved in [2], the convergence rate of Algorithm 2 is at the
same rate of 𝑂 (1√

𝑘
) as the convergence rate for incremental gra-

dient descent on the full data 𝑇 + [42]. Hence, theoretically, RECON
needs the same number of epochs to converge as training on the
full data. In this situation, since the coreset is much smaller than
the full data, the eciency is much improved.

6 EXPERIMENTS
The key questions we seek to answer are: (1) How does RECON
perform to select a well-performed coreset with an appropriate size,
as an end-to-end solution (§ 6.2)? (2) What about the eectiveness
and eciency of RECON, compared with baselines (§ 6.3 - § 6.5)?

6.1 Experimental Settings
Dataset.We used 5 widely-used real-world datasets that covered
various data characteristics, e.g., the dataset size varying from the
magnitude of 104 to 107. Table 1 shows the statistics of the datasets.
(1) Brazil [1] is a dataset with a multi-classication task to predict
“the review score of an order given by the customer” with four tables.
(2) IMDB [32] is a dataset that “predicts the score of movies” with 7
tables. Obviously, we can regard it as a regression task to predict
the score. To show more thorough experiments, similar to [14], we
also regard it as a classication task by dividing the rating scores
in to 5 equal intervals (i.e., grades) and predict the grade.

Table 1: Statistics of datasets.
Dataset # Tables # Rows (𝑇 +) # features (𝑇 +) Task
Brazil 4 98,463 9 Class.
IMDB 7 674,466 41 Class./Reg.

IMDB-Large 7 21,303,410 41 Class./Reg.
Stack 3 6,347,553 178 Reg.
Taxi 5 2,792,376 30 Reg.

(3) IMDB-Large is similar to IMDB, except that IMDB-Large uses all
tuples in Cast_info, producing 21,303,410 tuples for 𝑇 +.
(4) Stack [37] contains questions and answers from the StackEx-
change, which “predicts the reputation of users” as a regression task.
(5) Taxi [15] is to “ predict the number of vehicle collisions in New
York City for each day”. In particular, we have fuzzy join on this
dataset, e.g., the Weather table can join with the base table on the
attribute w.r.t. time, but the weather data is represented by the
granularity of minutes, hours, or days.

Following [30], for every dataset, the base table is ran-
domly shued and divided into 50%/25%/25% proportions as
train/validation/test set. All other tables will be used for feature
augmentation via joins while training, validating and testing.

The group key A of each dataset is specied by the user. Al-
though the user can specify any set of attributes as the group key,
by default, we use the (primary) key of the base table, if available.
We used {review_id}, {movie_id}, {movie_id}, {user_id} and
{datetime} as group keys for Brazil, IMDB, IMDB-Large, Stack
and Taxi in their base tables respectively.
Baselines. We compared with several baselines.
(1) Base uses the base table 𝑇 as train data to train ML models (see
e.g., Figure 3(a)–Ê).
(2) Full uses the fully augmented table𝑇 + as the train data to train
ML models (see e.g., Figure 3(a)–Ì).
(3) Sample-Join [58] uniformly samples tuples from 𝑇 + as train
data without materializing the join result.
(4) Join-Coreset [39, 41] selects the coreset over fully materialized
join result𝑇 + and uses the coreset as train data (see e.g., Figure 3(a)–
Î). We use the popular single-table coreset selection algorithm [39]
that follows the paradigm in Figure 5(b).
(5) Coreset-Join rst selects a coreset from the base table 𝑇 , then
joins with tables in T and nally trains on the join result.
(6) FML [14, 29, 49] (factorized ML) focuses on accelerating batch
gradient descent algorithm by decomposing the ML computations
through joins. Among these methods, [14] is a general one for
dierent ML algorithms, so we compare with it in § 6.5. In other
sections, we focus on the stochastic gradient descent algorithm that
is widely used in practice due to its high eciency.
Hyper-parameter Seing. For the classication task and regres-
sion task, we train logistic regression and linear regression models
by default respectively, where L2-regularization (regularization
coecient=10−5) and stochastic gradient descent (SGD) are applied.
The inuence of using dierent ML models will be evaluated in
§ 6.3. For training, we x the number of training epochs to 20. We
use k-inverse decay scheduling, i.e., 𝛼𝑘 = 𝛼0/(1+𝑏𝑘), where 𝛼0 and 𝑏
are tuned as hyperparameters independently for dierent methods.
The sample size 𝑆 is set to 500.
Evaluation Metrics. We evaluate the eciency in an end-to-end
way, including both the consuming time of coreset selection and

10−4 10−3 10−2

Proportion (p) of Coreset

1.0
1.1
1.2
1.3
1.4
1.5
1.6

M
SE

 L
os

s

(a) IMDB

10−4 10−3

Proportion (p) of Coreset
0.90
0.95
1.00
1.05
1.10
1.15

M
SE

 L
os

s

(b) IMDB-Large

10−4 10−3 10−2

Proportion (p) of Coreset

0.7
0.8
0.9
1.0
1.1
1.2

M
SE

 L
os

s

(c) Stack

10−4 10−3 10−2

Proportion (p) of Coreset
1.0
1.2
1.4
1.6
1.8
2.0

M
SE

 L
os

s

(d) Taxi
Figure 8: End-to-end coreset selection for regression.

10−3 10−2

Proportion (p) of Coreset
1.40
1.45
1.50
1.55
1.60
1.65

Cr
os

s E
nt

ro
py

(a) IMDB

10−4 10−3

Proportion (p) of Coreset
1.35
1.40
1.45
1.50
1.55
1.60

Cr
os

s E
nt

ro
py

(b) IMDB-Large

10−4 10−3

Proportion (p) of Coreset
2.0
2.1
2.2
2.3
2.4
2.5

Cr
os

s E
nt

ro
py

(c) Brazil
Figure 9: End-to-end coreset selection for classication.

model training. For eectiveness, we use dierent evaluation met-
rics for dierent tasks. For classication tasks, following previous
works [15, 58], we use model prediction accuracy as evaluation met-
ric. For regression tasks, following [29], we use root mean squared

error (𝑅𝑀𝑆𝐸 =

√︃∑𝑁
𝑡=1 (�̂�𝑡−𝑦𝑡)2

𝑁
) as evaluation metric.

6.2 End-to-end Coreset Selection
Recap that in § 5, the proposed algorithm takes as input a user-
specied 𝐾 as the size of the coreset. To realize an end-to-end
solution, one may consider how to choose an appropriate size of the
coreset. In this part, we propose a simple yet eective approach to
achieve this. For ease of explanation, we introduce 𝑝 = 𝐾

𝑁
to denote

the proportion of coreset compared to the full data in size. 𝑁 , i.e.,
|𝑇 + | can be computed eciently using [58] before it is materialized.
Approach.We start from a coreset in a small size, train on it and
evaluate on the validation set, enlarge the coreset and iteratively
train until the performance cannot improve much. Specically, we
start from 𝐾 = 10−4𝑁 , i.e., 𝑝 = 10−4 and train an initial model.
Then, we iteratively enlarge the coreset by 2 times and train. To
evaluate each coreset, we apply the model on the validation set and
compute the validation loss. If the loss decreases and remains stable
within several successive iterations, we stop enlarging the coreset.
Validation loss. Figure 8 -9 show the validation loss (i.e.,MSE loss
for regression task and cross entropy loss for classication task on
the 𝑦-axis) by varying the coreset size (the 𝑥-axis). At a high level,
with the number of tuples of a coreset increasing, the validation
loss decreases rapidly rst and then remains stable. As Figure 8(c)
shows, on Stack dataset, when 𝐾 = 0.0032 × 𝑁 = 10156, the loss is
0.69 and then it does not decrease much. We set that within three
successive iterations, if the loss varies no more than 1%, we can
stop. So nally, we can return the coreset with a size of 10156.
Eciency. One may consider whether the end-to-end coreset se-
lection including iterative training is time-consuming. The answer
is No. More concretely, with the coreset size increasing, it obviously
spends more time because both the iterative training and coreset
selection consume time, but it is still ecient. For example, it takes
13.3 mins, 4.6 mins, and 1.1 mins on the task of IMDB-Large and
Taxi for regression, and Brazil for classication respectively to
perform the end-to-end coreset selection. However, if train on 𝑇 +

100

101

Ti
m

e
(m

in
)

(a) IMDB

101

102

103

Ti
m

e
(m

in
)

(b) IMDB-Large

101

102

Ti
m

e
(m

in
)

(c) Stack
100

101

Ti
m

e
(m

in
)

(d) Taxi 101

102

Ti
m

e
(m

in
)

(e) IMDB
101

102

103

Ti
m

e
(m

in
)

(f) IMDB-Large

100

101

Ti
m

e
(m

in
)

(g) Brazil

Base Coreset-Join Sample-Join RECON Join-Coreset Full

Figure 10: Eciency. (a,b,c,d): Regression tasks; (e,f,g): Classication tasks.

1.0
1.2
1.4
1.6
1.8

RM
SE

(a) IMDB
1.0
1.2
1.4
1.6
1.8

RM
SE

(b) IMDB-Large 0.7
0.8
0.9
1.0
1.1
1.2

RM
SE

(c) Stack 0.6
0.8
1.0
1.2
1.4
1.6
1.8

RM
SE

(d) Taxi 0.60
0.62
0.64
0.66
0.68
0.70

Ac
cu

ra
cy

(e) IMDB 0.60
0.62
0.64
0.66
0.68
0.70

Ac
cu

ra
cy

(f) IMDB-Large 0.52
0.54
0.56
0.58
0.60
0.62

Ac
cu

ra
cy

(g) Brazil

Base Coreset-Join Sample-Join RECON Join-Coreset Full

Figure 11: Eectiveness. (a,b,c,d): Regression tasks; (e,f,g): Classication tasks.

0.8‰ 1.6‰ 3.2‰ 6.4‰ 12.8‰
Proportion (p) of Coreset

1.4
1.5
1.6
1.7
1.8

Cr
os

s E
nt

ro
py

 L
os

s

(a) IMDB

0.1‰ 0.2‰ 0.4‰ 0.8‰ 1.6‰ 3.2‰
Proportion (p) of Coreset

0.6
0.8
1.0
1.2
1.4
1.6

M
SE

 L
os

s

(b) Stack

RECON Single-Coreset Random Sample Full

Figure 12: Training loss comparison for IMDB and Stack.

0.1‰ 0.2‰ 0.4‰ 0.8‰ 1.6‰ 3.2‰
Proportion (p) of Coreset

1.0
1.2
1.4
1.6
1.8
2.0
2.2

Te
st

 R
M

SE

(a) Effectiveness

RECON Single-Coreset Random Sample Full

0.1‰ 0.2‰ 0.4‰ 0.8‰ 1.6‰ 3.2‰
Proportion (p) of Coreset

100

101

102

To
ta

l T
im

e
(m

in
)

(b) Efficiency
Figure 13: Eectiveness and eciency by varying 𝑝.

(i.e.,Full), it requires 782 mins, 72 mins, and 18 mins respectively.
The reasons are (1) The size of coreset is small and thus ecient to
train. (2) The number of iterations is not large, and we can ne-tune
the model in last iteration without training from scratch. (3) Coreset
selection algorithm is ecient and can be done incrementally.
Summary. This end-to-end coreset selection approach provides a
way to select an appropriate coreset size. Although several itera-
tions are needed, it is also ecient because the coreset size is small
and the coreset selection process is fast.

6.3 Comparison with Baselines
Using the coreset size of each dataset selected in § 6.2, we com-
pare eciency and eectiveness with baselines. To achieve a fair
comparison, for the baselines that sample a subset of tuples to
train, we sample the same number of tuples as the coreset size. For
Coreset-Join, we set the proportion of coreset over the base table
with the same 𝑝 as RECON.
Eciency.We show the total time including both coreset selection
and model training for dierent baselines and RECON in Figure 10,
given the coreset with the best size. We can see that in general,
RECON achieves eciency improvement nearly two orders of mag-
nitudes compared with Full and Join-Coreset. For example, on

0

2

4

6

8

To
ta

l T
im

e(
m

in
)

(a) Brazil for Class.
0

20
40
60
80

100
120

To
ta

l T
im

e(
m

in
)

(b) Stack for Reg.

RECON FML

Figure 14: Compare with FML.

dataset IMDB-Large for regression, RECON takes 13.3minutes, which
is nearly 2 orders of magnitudes more ecient than Full (782
mins) and Join-Coreset (612 mins). For classication, on dataset
IMDB-Large, RECON takes 110 min, which is also almost 2 orders of
magnitudes more ecient than Full (2.8 days) and Join-Coreset
(2.2 days). In addition, on dataset Stack and Taxi for regression,
RECON takes 11.8 mins and 4.6 mins respectively, which is still an
order of magnitude faster than Full (4 hours, 72 mins) and more
ecient than Join-Coreset (0.5 hours, 9 mins) over 2 times. The
reason is that Full has to train over a large amount of training
tuples, i.e., 𝑇 +. Although Join-Coreset trains over a coreset with
the same size of RECON, it selects the coreset based on 𝑇 +, which is
rather inecient. RECON outperforms them because it computes the
coreset directly from these tables to be joined. Besides, RECON takes
a slightly longer time than other baselines, e.g., Sample-Join (40
mins), Coreset-Join (35 mins) and Base (11 mins) on IMDB-Large
for classication, because Base does not need to augment features
and select the coreset, Sample-Join just uniformly samples with-
out considering the gradients and Coreset-Join computes the
coreset over the much smaller base table𝑇 . But they cannot achieve
high accuracy as discussed next.
Eectiveness. For regression tasks, on dataset IMDB-Large, we
nd in § 6.2 that 𝑝 = 0.0016 is the best choice. In this situation, we
can observe in Figure 11(b) that RECON has an RMSE of 0.998, which
outperforms Sample-Join (1.546). The reason is that Sample-Join
just samples for training without considering the gradient approxi-
mation. RECON outperforms Base because more useful features are
augmented. Besides, RECON also outperforms Coreset-Join (1.603)

Table 2: Convergence results for regression

iterations
to converge

Test RMSE
after convergence

Dataset RECON Full RECON Full

IMDB 37,000 6,200,700 1.025 1.023
IMDB-Large 330,000 201,300,000 0.998 0.985

Stack 174,700 62,912,000 0.749 0.747
Taxi 72,000 20,149,000 0.761 0.760

because the selected coreset of Coreset-Join does not consider
features to be augmented. Furthermore, RECON almost has the same
RMSE as Join-Coreset (0.988) and Full (0.985) because RECON can
well approximate the full gradient accurately with theoretical guar-
antees. That is, training on the coreset (only 0.0016 proportion of
the full data) can achieve the almost same performance as training
over the full data. For classication tasks, we have similar observa-
tions. For example, on dataset IMDB-Large, we can observe from
Figure 11(f) that RECON has an accuracy of 0.679, which is higher
than Base (0.607), Coreset-Join (0.628), Sample-Join (0.637), and
also close to Join-Coreset (0.679) and Full (0.681).
Loss. We show the training loss for IMDB of classication task
and Stack of regression task in Figure 12. We can see that RECON
converges to almost the same loss as Full, which demonstrates
that RECON can accurately estimate the gradient with theoretical
guarantees, and thus achieve the same performance as the full data.
Varying the coreset size. We also evaluate the eectiveness and ef-
ciency by varying 𝑝 in Figure 13 on IMDB-Large of regression task.
We only compare RECONwith Sample-Join and Join-Coreset, be-
cause only they can generate training data of dierent given sizes.
The result of Full is also plotted as a comparison.

Figure 13(a) shows that RMSE of RECON decreases rapidly rst,
and then remains stable when approaching the best coreset size.
RECON outperforms Sample-Join a lot and almost has the same per-
formance as Join-Coreset on all 𝑝 because RECON can approximate
the full gradient well. For eciency, in Figure 13(b), RECON is more
than one order of magnitude faster than Join-Coreset because
the coreset selection of RECON has a lower time complexity than
Join-Coreset. RECON is only a little slower than Sample-Join be-
cause coreset selection of RECON often takes up a small proportion
of time compared with iterative training.
Summary. RECON achieves much acceleration (because it computes
the coreset without fully materializing the augmented table) for
feature-rich ML without sacricing much eectiveness (because
it has the theoretical guarantee on the gradient computation). In
addition, we also test on non-convex models and nd similar ob-
servations, although there is no theoretical guarantees about the
gradient. Due to the space limitation, the results are reported in [2].

6.4 Convergence Evaluation
In § 5.3, we have theoretically proved the convergence rate of

RECON. To empirically test the convergence of dierent methods,
we compute test performance with the increase of SGD iterations.
The concrete numbers of iterations to converge and the converged
test performance are reported in Table 2 and Table 3. For all the
datasets, training on coresets (RECON) converges much faster than
Full. From the results in Table 2 and Table 3, we can observe

Table 3: Convergence results for classication

iterations
to converge

Test accuracy
after convergence

Dataset RECON Full RECON Full

IMDB 20,500 6,401,000 0.662 0.664
IMDB-Large 340,000 201,220,000 0.679 0.681

Brazil 780 874,800 0.606 0.607

that the speedup of RECON is generally more than two orders of
magnitudes. For example, on Stack for regression, training on the
coreset (RECON, only 0.0032 proportion of the full data) converges in
174,700 iterations, which is 360 times faster than Full (62,912,000
iterations). In addition, the speedup does not aect the test per-
formance after convergence much, e.g., on IMDB for classication,
the test accuracy after convergence of RECON (0.662) is similar to
Full (0.664). RECON converges fast with high accuracy, because the
coreset selected by RECON is much smaller than the full data, while
still approximating the full gradient with theoretical bound.
6.5 Comparison with FML
FML only supports batch gradient training, so we also use batch
gradient descent to train for a fair comparison. Since FML aims to
accelerate the training process over the full data, it has the same
performance as Full, so we only compare the eciency with FML.
We compare the total time including both coreset selection and
model training between RECON and FML on Brazil and Stack. Fig-
ures 14(a)-(b) report the result, which shows that RECON outper-
forms FML on both datasets. This is because although FML improves
the eciency by reducing the linear algebra computations, it still
needs training over the full data, while our method trains over the
judiciously selected coreset with a small size.

6.6 Additional Experiments
Note that joins may change the original distribution of the base
table𝑇 , i.e., one tuple in𝑇 may correspond to multiple tuples in𝑇 +,
and thus the eectiveness can be evaluated both on 𝑇 or 𝑇 +. In the
paper, we only report the results on the distribution of the joined
table 𝑇 +, and leave the results on 𝑇 in the technical report [2]. We
also evaluated and discussed the eect of changing ML models (We
put it in our technical report [2]).

7 CONCLUSION
We propose RECON for selecting a coreset of train tuples from an aug-
mented table without materializing it through joins. RECON solves
the problem that coreset selection over a big augmented table is
time-consuming. The coreset can speed up iterative gradient meth-
ods for training ML models (i.e., data-ecient). The augmented fea-
tures can improve the accuracy of trained ML models (i.e., feature-
rich). Extensive experiments veried RECON can much improve the
eciency of coreset selection without sacricing the performance.

ACKNOWLEDGMENTS
This work is supported by NSF of China (62232009, 61925205,
62102215, 62072261), Huawei, TAL education, China National Post-
doctoral Program for Innovative Talents (BX2021155), China Post-
doctoral Science Foundation (2021M691784), Shuimu Tsinghua
Scholar.

REFERENCES
[1] 2022. https://www.kaggle.com/datasets/olistbr/brazilian-ecommerce/. Accessed:

2022-04-28.
[2] 2022. Coresets over Multiple Tables for Feature-rich and Data-ecient Machine

Learning [Technical Report]. https://github.com/for0nething/RECON-TR/blob/
main/main.pdf. Last accessed: 2022-09-15.

[3] Amina Adadi. 2021. A survey on data-ecient algorithms in big data era. J. Big
Data 8, 1 (2021), 1–54.

[4] Omar Y. Al-Jarrah, Paul D. Yoo, Sami Muhaidat, George K. Karagiannidis, and
Kamal Taha. 2015. Ecient Machine Learning for Big Data: A Review. Big Data
Res. 2, 3 (2015), 87–93.

[5] Zeyuan Allen-Zhu, Yang Yuan, and Karthik Sridharan. 2016. Exploiting the
structure: Stochastic gradient methods using raw clusters. Advances in Neural
Information Processing Systems 29 (2016).

[6] Matthias Boehm and Michael Dusenberry et.al. 2016. SystemML: Declarative
Machine Learning on Spark. Proc. VLDB Endow. 9, 13 (2016), 1425–1436. https:
//doi.org/10.14778/3007263.3007279

[7] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. 2004. Convex opti-
mization. Cambridge university press.

[8] Vladimir Braverman, Dan Feldman, and Harry Lang. 2016. New Frameworks for
Oine and Streaming Coreset Constructions. CoRR abs/1612.00889 (2016).

[9] Trevor Campbell and Tamara Broderick. 2018. Bayesian Coreset Construction
via Greedy Iterative Geodesic Ascent. In ICML 2018, Vol. 80. PMLR, 697–705.

[10] Chengliang Chai, Lei Cao, Guoliang Li, Jian Li, Yuyu Luo, and Samuel Madden.
2020. Human-in-the-loop Outlier Detection. In SIGMOD 2020. ACM, 19–33.
https://doi.org/10.1145/3318464.3389772

[11] Chengliang Chai, Guoliang Li, Jian Li, Dong Deng, and Jianhua Feng. 2016.
Cost-Eective Crowdsourced Entity Resolution: A Partial-Order Approach. In
SIGMOD 2016. ACM, 969–984. https://doi.org/10.1145/2882903.2915252

[12] Chengliang Chai, Jiabin Liu, Nan Tang, Guoliang Li, and Yuyu Luo. 2022. Selective
Data Acquisition in the Wild for Model Charging. Proc. VLDB Endow. 15, 7 (2022),
1466–1478. https://www.vldb.org/pvldb/vol15/p1466-li.pdf

[13] Chengliang Chai, Jiayi Wang, Yuyu Luo, Zeping Niu, and Guoliang Li. 2022. Data
management for machine learning: A survey. IEEE Transactions on Knowledge
and Data Engineering (2022).

[14] Lingjiao Chen, Arun Kumar, Jerey Naughton, and Jignesh M Patel. 2017. To-
wards Linear Algebra over Normalized Data. Proceedings of the VLDB Endowment
10, 11 (2017).

[15] Nadiia Chepurko, Ryan Marcus, Emanuel Zgraggen, Raul Castro Fernandez,
Tim Kraska, and David R. Karger. 2020. ARDA: Automatic Relational Data
Augmentation for Machine Learning. Proc. VLDB Endow. 13, 9 (2020), 1373–1387.

[16] Kai Lai Chung. 1954. On a stochastic approximation method. The Annals of
Mathematical Statistics (1954), 463–483.

[17] Jerey Cohen, Brian Dolan, Mark Dunlap, Joseph M. Hellerstein, and Caleb
Welton. 2009. MAD Skills: New Analysis Practices for Big Data. Proc. VLDB
Endow. 2, 2 (2009), 1481–1492. https://doi.org/10.14778/1687553.1687576

[18] Dan Feldman. 2020. Introduction to Core-sets: an Updated Survey. CoRR
abs/2011.09384 (2020).

[19] Michael R Garey andDavid S Johnson. 1979. Computers and intractability. Vol. 174.
freeman San Francisco.

[20] Isabelle Guyon and André Elissee. 2003. An Introduction to Variable and Feature
Selection. J. Mach. Learn. Res. 3 (2003), 1157–1182.

[21] Joseph M. Hellerstein, Christopher Ré, Florian Schoppmann, Daisy Zhe Wang,
Eugene Fratkin, Aleksander Gorajek, Kee Siong Ng, Caleb Welton, Xixuan Feng,
Kun Li, and Arun Kumar. 2012. The MADlib Analytics Library or MAD Skills,
the SQL. Proc. VLDB Endow. 5, 12 (2012), 1700–1711.

[22] Thomas Hofmann, Aurelien Lucchi, Simon Lacoste-Julien, and Brian McWilliams.
2015. Variance reduced stochastic gradient descent with neighbors. Advances in
Neural Information Processing Systems 28 (2015).

[23] Jiawei Huang, Ruomin Huang, Wenjie Liu, Nikolaos M. Freris, and Hu Ding.
2021. A Novel Sequential Coreset Method for Gradient Descent Algorithms. In
ICML 2021, Vol. 139. PMLR, 4412–4422.

[24] Rishabh K. Iyer and Je A. Bilmes. 2013. Submodular Optimization with Submod-
ular Cover and Submodular Knapsack Constraints. In NeurIPS 2013. 2436–2444.

[25] David Justo, Shaoqing Yi, Lukas Stadler, Nadia Polikarpova, and Arun Kumar.
2021. Towards a polyglot framework for factorized ML. Proc. VLDB Endow. 14,
12 (2021), 2918–2931.

[26] KrishnaTeja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, and
Rishabh K. Iyer. 2021. GLISTER: Generalization based Data Subset Selection for
Ecient and Robust Learning. In AAAI 2021,. AAAI Press, 8110–8118.

[27] Katrin Kirchho and Je A. Bilmes. 2014. Submodularity for Data Selection in
Machine Translation. In EMNLP 2014. ACL, 131–141.

[28] Arun Kumar, Mona Jalal, Boqun Yan, Jerey F. Naughton, and Jignesh M. Patel.
2015. Demonstration of Santoku: Optimizing Machine Learning over Normalized
Data. Proc. VLDB Endow. 8, 12 (2015), 1864–1867.

[29] Arun Kumar, Jerey Naughton, and Jignesh M Patel. 2015. Learning generalized
linear models over normalized data. In SIGMOD 2015. 1969–1984.

[30] Arun Kumar, Jerey F. Naughton, Jignesh M. Patel, and Xiaojin Zhu. 2016. To
Join or Not to Join?: Thinking Twice about Joins before Feature Selection. In
SIGMOD 2016. ACM, 19–34.

[31] Hai Lan, Zhifeng Bao, and Yuwei Peng. 2021. A Survey on Advancing the DBMS
Query Optimizer: Cardinality Estimation, Cost Model, and Plan Enumeration.
Data Sci. Eng. 6, 1 (2021), 86–101.

[32] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,
and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc.
VLDB Endow. 9, 3 (2015), 204–215.

[33] Guoliang Li, Chengliang Chai, Ju Fan, Xueping Weng, Jian Li, Yudian Zheng,
Yuanbing Li, Xiang Yu, Xiaohang Zhang, andHaitao Yuan. 2017. CDB: Optimizing
Queries with Crowd-Based Selections and Joins. In SIGMOD 2017. ACM, 1463–
1478. https://doi.org/10.1145/3035918.3064036

[34] Side Li, Lingjiao Chen, and Arun Kumar. 2019. Enabling and Optimizing Non-
Linear Feature Interactions in Factorized Linear Algebra. In SIGMOD 2019.
1571–1588.

[35] Jiabin Liu, Chengliang Chai, Yuyu Luo, Yin Lou, Jianhua Feng, and Nan Tang.
2022. Feature Augmentation with Reinforcement Learning. In ICDE 2022, Kuala
Lumpur, Malaysia, May 9-12, 2022. IEEE, 3360–3372.

[36] Jiabin Liu, Fu Zhu, Chengliang Chai, Yuyu Luo, and Nan Tang. 2021. Automatic
Data Acquisition for Deep Learning. Proc. VLDB Endow. 14, 12 (2021), 2739–2742.
https://doi.org/10.14778/3476311.3476333

[37] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-
izadeh, and TimKraska. 2021. Bao:Making LearnedQuery Optimization Practical.
In SIGMOD 2021. 1275–1288.

[38] Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Von-
drák, and Andreas Krause. 2015. Lazier than lazy greedy. In AAAI, Vol. 29.

[39] Baharan Mirzasoleiman, Je A. Bilmes, and Jure Leskovec. 2020. Coresets for
Data-ecient Training of Machine Learning Models. In ICML 2020, Vol. 119.
6950–6960.

[40] Baharan Mirzasoleiman, Kaidi Cao, and Jure Leskovec. 2020. Coresets for Robust
Training of Deep Neural Networks against Noisy Labels. In NeurIPS 2020.

[41] Alexander Munteanu and Chris Schwiegelshohn. 2018. Coresets-methods and
history: A theoreticians design pattern for approximation and streaming algo-
rithms. KI-Künstliche Intelligenz 32, 1 (2018), 37–53.

[42] Angelia Nedić and Dimitri Bertsekas. 2001. Convergence rate of incremental
subgradient algorithms. In Stochastic optimization: algorithms and applications.
Springer, 223–264.

[43] DanOlteanu andMaximilian Schleich. 2016. F: RegressionModels over Factorized
Views. Proc. VLDB Endow. 9, 13 (2016), 1573–1576.

[44] Xuedi Qin, Chengliang Chai, Yuyu Luo, Nan Tang, and Guoliang Li. 2020. Inter-
actively Discovering and Ranking Desired Tuples without Writing SQL Queries.
In SIGMOD2020. ACM, 2745–2748.

[45] Xuedi Qin, Chengliang Chai, Yuyu Luo, Tianyu Zhao, Nan Tang, Guoliang Li,
Jianhua Feng, Xiang Yu, and Mourad Ouzzani. 2021. Ranking Desired Tuples by
Database Exploration. In ICDE 2021. IEEE, 1973–1978.

[46] LKPJ Rdusseeun and P Kaufman. 1987. Clustering by means of medoids. In Pro-
ceedings of the statistical data analysis based on the L1 norm conference, neuchatel,
switzerland, Vol. 31.

[47] Steen Rendle. 2013. Scaling Factorization Machines to Relational Data. Proc.
VLDB Endow. 6, 5 (2013), 337–348.

[48] Yuji Roh, Kangwook Lee, Steven Euijong Whang, and Changho Suh. 2021. Fair-
Batch: Batch Selection for Model Fairness. In ICLR 2021. OpenReview.net.

[49] Maximilian Schleich, Dan Olteanu, and Radu Ciucanu. 2016. Learning Linear
Regression Models over Factorized Joins. In SIGMOD 2016. ACM, 3–18.

[50] Vraj Shah, Arun Kumar, and Xiaojin Zhu. 2017. Are Key-Foreign Key Joins Safe
to Avoid when Learning High-Capacity Classiers? Proc. VLDB Endow. 11, 3
(2017), 366–379.

[51] Jiayi Wang, Chengliang Chai, Jiabin Liu, and Guoliang Li. 2021. FACE: A Nor-
malizing Flow based Cardinality Estimator. Proc. VLDB Endow. 15, 1 (2021),
72–84.

[52] Ruofan Wu, Feng Zhang, Jiawei Guan, Zhen Zheng, Xiaoyong Du, and Xipeng
Shen. 2022. DREW: Ecient Winograd CNN Inference with Deep Reuse. In
WWW (WWW ’22). Association for Computing Machinery, 1807–1816.

[53] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen,
and Ion Stoica. 2020. NeuroCard: One Cardinality Estimator for All Tables. Proc.
VLDB Endow. 14, 1 (2020), 61–73. https://doi.org/10.14778/3421424.3421432

[54] Haitao Yuan and Guoliang Li. 2021. A Survey of Trac Prediction: from Spatio-
Temporal Data to Intelligent Transportation. Data Sci. Eng. 6, 1 (2021), 63–85.

[55] Feng Zhang, Jidong Zhai, Xipeng Shen, Onur Mutlu, and Xiaoyong Du. 2022.
POCLib: A high-performance framework for enabling near orthogonal processing
on compression. TPDS 33, 2 (2022), 459–475.

[56] Bo Zhao and Hakan Bilen. 2021. Dataset condensation with dierentiable siamese
augmentation. In ICML. PMLR, 12674–12685.

[57] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. 2021. Dataset Condensation
with Gradient Matching. ICLR 1, 2 (2021), 3.

[58] Zhuoyue Zhao, Robert Christensen, Feifei Li, Xiao Hu, and Ke Yi. 2018. Random
Sampling over Joins Revisited. In SIGMOD 2018. ACM, 1525–1539.

https://www.kaggle.com/datasets/olistbr/brazilian-ecommerce/
https://github.com/for0nething/RECON-TR/blob/main/main.pdf
https://github.com/for0nething/RECON-TR/blob/main/main.pdf
https://doi.org/10.14778/3007263.3007279
https://doi.org/10.14778/3007263.3007279
https://doi.org/10.1145/3318464.3389772
https://doi.org/10.1145/2882903.2915252
https://www.vldb.org/pvldb/vol15/p1466-li.pdf
https://doi.org/10.14778/1687553.1687576
https://doi.org/10.1145/3035918.3064036
https://doi.org/10.14778/3476311.3476333
https://doi.org/10.14778/3421424.3421432

	Abstract
	1 Introduction
	2 Related Work
	3 Coreset Selection Framework
	3.1 Gradient Descent for Machine Learning
	3.2 Coreset of One Table T
	3.3 Coreset of Multiple Tables

	4 Gradient Approximation Error Bounded by Groups
	4.1 Upper Bound of a Fixed and Given Groups
	4.2 Upper Bound for the Parameter Space and Groups
	4.3 Connection between Groups of the Single Augmented Table and Multiple Tables

	5 RECON Algorithm
	5.1 Algorithm Overview
	5.2 Partial Feature Similarity Pre-computation
	5.3 Gradient Aggregation for Feature Similarity (sji) Computation

	6 EXPERIMENTS
	6.1 Experimental Settings
	6.2 End-to-end Coreset Selection
	6.3 Comparison with Baselines
	6.4 Convergence Evaluation
	6.5 Comparison with FML
	6.6 Additional Experiments

	7 CONCLUSION
	Acknowledgments
	References

