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Abstract—Entity Resolution (ER) is a fundamental problem
with many applications. Machine learning (ML)-based and rule-
based approaches have been widely studied for decades, with
many efforts being geared towards which features/attributes to
select, which similarity functions to employ, and which blocking
function to use – complicating the deployment of an ER system
as a turn-key system. In this paper, we present DEEPER, a turn-
key ER system powered by deep learning (DL) techniques. The
central idea is that distributed representations and representation
learning from DL can alleviate the above human efforts for
tuning existing ER systems. DEEPER makes several notable
contributions: encoding a tuple as a distributed representation of
attribute values, building classifiers using these representations
and a semantic aware blocking based on LSH, and learning
and tuning the distributed representations for ER. We evaluate
our algorithms on multiple benchmark datasets and achieve
competitive results while requiring minimal interaction with
experts.

I. INTRODUCTION

Entity Resolution (ER) (a.k.a. deduplication and record
linkage) is a fundamental problem in data integration and data
cleaning. Machine learning (ML)- and rule-based approaches
have been widely studied for decades, whereby ML-based
approaches deliver better performance, and rule-based methods
are preferred when interpretability, maintenance, and explicit
definition of domain knowledge are needed [1].

Despite all the work in ER, most existing systems need
heavy tuning of features, similarity functions, and blocking
functions, among other things – these highlight the emerging
need of a turn-key ER system that can perform ER with
minimal interaction with experts [2], [3], [4].

A. Desiderata for a Turn-Key ER System

� Minimal Feature Engineering: Traditional ML- or rule-
based approaches often rely on handcrafted features, simi-
larity functions for every attribute and their corresponding
thresholds. Good feature engineering is labor intensive, time
consuming, domain specific or even dataset specific [5].

� Semantic Similarity Measures: Choosing a symbolic
similarity measure is typically not sufficient. For example, the
words “NIPS” and “ICDE” have the same edit distance with
“VLDB”; while we know that “ICDE” is closer to “VLDB”.
This is an important issue as many real-world datasets often
contain semistructured or unstructured data (e.g., product
description), where simple similarity metrics are not adequate.

� Automated and Customizable Blocking: Blocking is a key
technique used by ER systems to avoid comparing all possible
pairs of tuples. Most of the prior work (including those on

approximate blocking - see Section VII) do not use semantic
similarity for blocking. Further, traditional blocking functions
are concise and often utilize a small number (typically 1-3)
of attributes for blocking. However, for effective blocking, it
might be necessary to take a holistic view of the entire tuple.

� Robustness to Expert Mistakes: Most ER systems are
especially sensitive to expert mistakes in a number of scenarios
such as labels for training data, feature engineering, selection
of similarity functions/thresholds, and selection of blocking
functions. Sub-optimal choices in any of them often incurs a
major performance penalty.

� Minimal Portability Effort: In a traditional ER system,
one has to repeat the entire workflow process of feature
engineering, blocking function selection, labeling training data
and so on for each dataset. This often leads to a significant cost
in porting an ER system developed for one dataset to another.
An ideal turn-key system should only require the labels for
the training data of the new dataset.

� Less Training Data: Both training an ER ML model or
learning ER rules require a reasonably large training dataset.
For example, [5] shows that the best performing ML system
can require hundreds of labeled tuple pairs. In many cases,
training dataset preparation is often the most expensive part
of ER as it has to be done manually by experts.

� Simple Architecture: Finally, the ER system must have a
simple and intuitive architecture. A complex architecture often
requires more parameters to tune and reduces the overall turn-
key performance.

B. DEEPER: A Turn-key ER System using Deep Learning

Deep Learning (DL) is an emerging paradigm that has
achieved great performance in many applications such as im-
age recognition, language translation and speech recognition.
We introduce distributed representations, a fundamental con-
cept in DL, that can be used to meet all the requirements for
a turn-key ER system. Informally, distributed representations
(DRs), such as word2vec [6] or GloVe [7], maps an entity
(such as a word) to a high dimensional dense vector with real
numbers such that the vectors for similar words are closer to
each other in their semantic space. For example, the distributed
representation for ‘VLDB” and “ICDE” will be closer than the
vectors for “VLDB” and “NIPS”.

Contributions. While distributed representation is conven-
tional wisdom in many fields such as NLP, it has not been
explored in databases. In this paper, we make a series of



contributions. We propose a number of different mechanisms
that represents tuples as high dimensional vectors such that
(semantically) similar tuples have a high (cosine) similarity.
Using pre-trained DR dictionaries, we make this conversion
process automatic and thereby obviating the need for manual
feature engineering. The pre-trained distributed representations
are often trained on very large corpus from the Internet – e.g.,
GloVe is trained on a corpus with 840 billion tokens – they
already encode many general information such as the fact that
“ICDE” and “International Conference on Data Engineering”
are similar. This pre-training has the positive side-effect of
requiring much less training data for performing ER on general
datasets such as products, citations, and restaurants.

While a more complex DL model can eke out a small
improvement, this is achieved at the cost of increased training
or tuning. DEEPER uses a simple DL-based architecture that
leverages distributed representations to pre-set most of the
model parameters. For most of datasets (including all of
ER benchmark datasets), DEEPER requires substantially less
training data than state-of-the-art ML methods while still being
competitive.

We propose a DL based classifier using DRs that is com-
petitive or surpasses prior state-of-the-art methods. Both the
representations and the similarity functions can be considered
as trainable parameters of the DL model thereby avoiding the
cornucopia of domain specific similarity functions and thresh-
olds. DRs open up a number of new opportunities for blocking.
We propose a series of LSH-based algorithms that can perform
automated, semantic and customizable blocking based on the
entire tuple (as against 1-3 attributes of traditional blocking)
without any need for blocking functions from domain experts.
By leveraging the extensive theoretical analysis of LSH, we
can even provide various ER specific guarantees.

C. Summary of Experiments

We built DEEPER, a practical DL based ER system that
we plan to open source. We conducted extensive experiments
over 4 benchmark datasets that are widely used in prior work
covering diverse domains such as citations and e-commerce.
They also span a wide spectrum of data characteristics and
difficulty levels. In a nutshell, DEEPER outperforms published
state-of-the-art ML, non-ML and crowd approaches while
requiring less data than other ML based approaches. DEEPER
achieves impressive results even when we do not fine-tune the
model for every dataset. In other words, we built a model that
is an off-the-shelf turn-key solution that nevertheless provided
competitive results to ML models that were tuned for that
dataset. In contrast to prior work, our method is also robust
to null values, noise and even incorrect labels. Even under
an extreme scenario where 10% of the labels are incorrect,
DEEPER still achieves respectable results.

The rest of the paper is organized as follows. In Section II,
we overview DEEPER. In Section III, we describe an effective
classifier for ER by leveraging DRs and feature composition.
We describe our LSH-based blocking of DRs in Section IV. In
Section V, we show how to tune the representations for the ER

task. Section VI presents our experiments. We present related
work and final remarks in Sections VII and VIII, respectively.

II. DEEPER OVERVIEW

One of the key contributions of our paper is an elegant
synthesis of ideas from the theory of Entity Resolution (ER)
and Deep Learning (DL). In this section, we give an overview
of the main techniques and how they all fit together.

Let T = {t1, . . . , tn} be a relational table with n tuples and
m attributes A1, . . . , Am. We denote the value of attribute Aj
of tuple ti as ti[Aj ]. The problem of entity resolution (ER)
is, given all distinct tuple pairs (ti, tj) from T where ti 6= tj ,
determine which pairs of tuples refer to the same real-world
entities (a.k.a. a match).

Entity Resolution as a Classification Problem. Most ma-
chine learning (ML) based approaches treat ER as a binary
classification problem [8], [4], [3], [9]. Given a pair of tuples
(ti, tj), the classifier outputs true (resp. false) to indicate that
ti and tj match (resp. mismatch). The Fellegi-Sunter model [8]
is a formal framework for probabilistic ER and most prior ML
works are simple variants of this approach. Intuitively, given
two tuples ti and tj , we compute a vector of similarity scores
between aligned attributes, based on predefined similarity
functions. The vectors of known matched (resp. mismatched)
tuple pairs – that are also referred to as positive (resp. negative)
examples – are used to train a binary classifier (e.g., SVMs,
decision trees, or random forests). The trained binary classifier
can then be used to predict for any arbitrary tuple pair.

Distributed Representations (DRs) for Tuples. A distributed
representation of words (a.k.a. word embeddings) maps indi-
vidual words to a dense high dimensional vector (say with 300
dimensions) such that semantically related concepts (such as
“VLDB” and “ICDE”) are close to each other in the vector
space [6]. DEEPER transforms each tuple into a high dimen-
sional vector such that similar tuples have high similarity.

Our initial approach converts each attribute of the tuple
into its corresponding distributed representation by averaging
the word vectors obtained from Glove [7]. The similarity
between two values for an attribute can be computed as the
distance between their corresponding vector representations,
for example, using the cosine similarity metric. The similarity
vector is a m-dimensional vector where the i-th entry is the
similarity score for attribute Ai for the given pair of tuples.
A classifier is then trained based on the similarity vectors for
known matched and mismatched tuple pairs.

An alternate approach computes a representation for each
attribute through sophisticated compositional methods in DL
such as LSTM-based recurrent neural networks. Given com-
posed vectors for a pair of tuples, we compute their dis-
tributional similarity through subtracting (vector difference)
or multiplying (Hadamard product) the corresponding entries.
The ER classifier is then trained based on the distributional
similarity vector for the training examples.

Tuning Representations for Entity Resolution. Almost all
of the benchmark datasets for ER are in the English language



Algorithm 1 DEEPER Approach
1: Convert each tuple into a compositional distributed repre-

sentation
2: Compute a similarity vector for each pair of tuples in the

training set
3: Train a classifier on the similarity vectors
4: Perform blocking for all tuples in the dataset
5: Run the classifier over all tuple pairs within each block
6: Return all matched tuple pairs

and are general purpose domains such as matching products
and publications. Hence, we can use any of the popular
pre-trained representations such as GloVe [7], word2vec [6]
(or fastText [10] for multilingual datasets). However, these
representations are generic in the sense that they are not
“tuned” for the specific ER task. We propose an end-to-
end mechanism to learn the appropriate representation for a
particular dataset.

Blocking for Distributed Representations. Blocking is a key
technique for improving the efficiency of ER by grouping
tuples into blocks. There has been extensive work on designing
appropriate blocking functions that operate in the symbolic
realm. We propose two efficient and effective blocking algo-
rithms based on the distributional representation for tuples that
also take semantic relatedness into account.

Overall Approach. Algorithm 1 shows the pseudocode for
our overall approach. We describe how each of the steps is
instantiated in the remainder of the paper.

III. ENTITY RESOLUTION WITH DEEP LEARNING

In this section, we describe how to design an effective classi-
fier for ER by leveraging the idea of distributed representation
and feature composition in the DL framework.

A. Distributed Representations for Words

We start by providing an abbreviated and simplistic descrip-
tion for distributed representation of words (please refer to [11]
for more details).

Distributed representation of words is an embedding method
that seeks to map each word in a given vocabulary into a
high dimensional vector (e.g., 300 dimensions). In other words,
each word is represented as a distribution of weights (positive
or negative) across these dimensions. Often, many of these
dimensions can be independently varied. The representation
is considered “distributed” since each word is represented by
setting appropriate weights over multiple dimensions while
each dimension of the vector contributes to the representa-
tion of many words. Distributed representations can express
an exponential number of “concepts” due to the ability to
compose the activation of many dimensions [11]. In contrast,
the symbolic (a.k.a. discrete) representation often leads to
data sparsity and requires substantially more data to train ML
models successfully [12].

A number of methods have been proposed to compute
the distributed representation of words including word2vec
[6], GloVe [7], and fastText [10]. Generally speaking, these
approaches attempt to capture the semantics of a word by
considering its relations with neighboring words in its context.
In this paper, we use GloVe, which is based on a key observa-
tion that the ratios of co-occurrence probabilities for a pair of
words has some potential to encode a notion of its meaning.
GloVe formalizes this observation as a log-bilinear model with
a weighted least-squares objective function. Informally, GloVe
is trained on a global word-word co-occurrence matrix and
seeks to encode general semantic relationships as vector offsets
in a high dimensional space. This objective function has a
number of appealing properties such as the vector difference
between the representations for (man, woman), (king, queen),
(brother, sister) are roughly equal.

B. Distributed Representations for Tuples

In this paper, we advocate for distributed representations
where each tuple is represented as a dense high dimensional
vector of real numbers. Additionally, tuples that are similar
(based on expert defined similarity functions) must have vector
representations that have high Cosine similarity. This alternate
representation has become conventional wisdom in other fields
such as natural language processing and has many appealing
properties. For example, this approach minimizes feature engi-
neering and encodes semantic similarity. Due to its generality,
it is possible that the same intermediate representation (such
as from word2vec, GloVe, or fastText) can work for multiple
datasets out-of-the-box. In contrast, traditional ER approach
require hand tuning for each dataset. Further, DR toolkits
such as fasttext [10] provide support for almost 300 languages
allowing them (and thereby DEEPER) to work seamlessly on
different languages. For the rest of this section, we assume the
availability of GloVe pre-trained word vectors (of dimension
d).

Let v(t) be the distributed representation for a tuple t while
v(t[Ak]) be the distributed representation for the value of
attribute Ak in tuple t.

From Tuple to Vector – Basic Approach. Given a tuple t with
m attributes, our objective is to convert it into a distributed
representation as a matrix of real values v(t) ∈ Rm×d, where
the k-th row vk(t) represents the vector for attribute Ak in
tuple t, i.e., v(t[Ak]). We first break each attribute into its
individual words using a standard tokenizer. For each token
(word), we look up the GloVe pre-trained vector and retrieve
the d-dimensional vector. Glove contains a special token UNK
to represent any out-of-vocabulary word. If a word is not found
in the GloVe dictionary (dubbed out-of-vocabulary scenario) or
if the attribute has a NULL value, it is considered as UNK. In
our initial approach, the vector representation for an attribute
value is obtained by simply averaging the vectors of its tokens.
Algorithm 2 describes the process.

From Tuple to Vector – Compositional Approach. An
alternative approach is to use a compositional technique mo-



Algorithm 2 Tuple2vec-Averaging
1: Input: Tuple t, pre-trained vectors such as GloVe
2: Output: Distributed representation v(t) for t
3: for each attribute Ak of t do
4: Pre-process and tokenize t[Ak]
5: Look up vectors for tokens wl ∈ t[Ak] in GloVe
6: vk(t) = average of vectors of tokens in t[Ak]

tivated by the linguistic structures (e.g., n-grams, sequence,
and tree) in Natural Language Processing (NLP). In this
approach, instead of simple averaging, we use a neural network
to semantically compose the word vectors (retrieved from
Glove) into an attribute-level vector. Different neural network
architectures have been proposed to consider different types
of linguistic structures, e.g., convolutional network for n-
gram level composition [13], recurrent network for sequential
composition [14], [15], and recursive network for hierarchical
tree-based composition [16]. The most popular compositional
methods use a recurrent structure [14].

In our work, we use uni- and bi-directional recurrent neural
networks (RNN) with LSTM hidden units [17], a.k.a. LSTM-
RNNs. As shown in Figure 1(b), an RNN encodes a sequence
(e.g., an attribute value) into a vector by processing its word
vectors sequentially, at each time step, combining the current
input word vector with the previous hidden state. RNNs
thus create internal states by remembering the output of the
previous time step, which allows them to exhibit dynamic
temporal behavior. We can interpret the hidden state hl at
time l as an intermediate representation summarizing the
past. The output of the last time step hL thus represents the
attribute. LSTM cells contain specifically designed gates to
store, modify or erase information, which allow RNNs to learn
long range sequential dependencies. The LSTM-RNN shown
in Figure 1(b) is unidirectional in the sense that it encodes
information from left to right. Bidirectional RNNs [18] capture
dependencies from both directions, thus provide two different
views of the same sequence. For bidirectional RNNs, we use
the concatenated vector [

−→
hL,
←−
hL] as the final representation of

the attribute value, where
−→
hL and

←−
hL are the encoded vectors

from left to right and right to left, respectively.
For each word token in an attribute, we first look up its

Glove vector. Then we use a shared LSTM-RNN to compose
each attribute value in a tuple into a vector.1 This results in a
matrix v(t) ∈ Rm×d, where the k-th row vk(t) represents the
vector for attribute Ak in tuple t. Algorithm 3 demonstrates
the overall compositional process. It is important to note that
the parameters of the LSTM-RNN model need to be learned
on the ER task in a deep learning framework before it can be
used to compose vectors for other off-the-shelf classifiers.

Computing Distributional Similarity. Given the distributed
representation of a pair of tuples ti and tj , the next step is

1By the term ‘shared’ we mean the parameters of the model are shared
across the attributes. In other words, the LSTM-RNNs for different attributes
in a table share the same parameters.

Algorithm 3 Tuple2Vec-Compositional
1: Input: Tuple t, pre-trained vectors such as GloVe
2: Output: Distributed representation v(t) for t
3: for each attribute Ak of t do
4: Pre-process and Tokenize t[Ak]
5: Look up vectors for tokens wl ∈ t[Ak] in GloVe
6: Pass the GloVe vectors for tokens through a LSTM-

RNN composer to obtain v(t[Ak])

to compute the similarity between them. We compute simi-
larity by applying a similarity metric to each corresponding
rows of v(ti) and v(tj). More formally, sim (vk(ti),vk(tj)),
∀k ∈ [1,m]. This returns a m-dimensional similarity vector.
The most commonly used metric is cosine similarity. Other
methods include subtracting (vector difference) or multiplying
(hadamard product) the corresponding entries of the two vec-
tors. One can also compute similarity using multiple similarity
metrics and concatenate the resulting vectors. If we use q
different metrics, the resulting similarity vector will have q×m
entries.

Algorithm 4 ER-Classifier
1: Input: Table T , training set S
2: Output: All matching tuple pairs in Table T
3: for each pair of tuples (ti, tj) in S do
4: Compute the distributed representation for ti and tj
5: Compute their distributional similarity vector
6: Train a classifier C using the similarity vectors for S and

true labels
7: for each pair of tuples (ti, tj) in T do
8: Compute the distributed representation for ti and tj
9: Compute their distributional similarity vector

10: Predict match/mismatch for (ti, tj) using C

C. Building an ER Classifier

It is fairly straightforward to build a classifier for ER
using the above steps. For each of the pair of tuples in the
training dataset, we compute their distributed representation
through either Algorithm 2 or Algorithm 3. We then compute
the similarity vector by measuring the similarity between
corresponding attributes using different metrics. Given a set
of positive and negative matching examples, we pass their
similarity vectors to a classifier such as SVM along with their
labels. Alternatively, the whole procedure (from distributed
representation to classification) can be trained end-to-end in a
DL framework as shown in Figure 1 (we will provide more
details in Section V). The learned classifier can then be used
to predict the match/mismatch label for any pair of tuples.
Algorithm 4 provides the pseudocode.

IV. BLOCKING FOR DISTRIBUTED REPRESENTATIONS

Blocking. Efficient ER systems avoid comparing all
(
n
2

)
possible pairs of tuples through the use of blocking [19],



[20]. Blocking identifies groups of tuples (called blocks) such
that the search for duplicates need to be done only within
blocks, thus greatly reducing the search space. If there are B
blocks with bmax as the size of the largest block, this requires
O(b2max×B) which can be orders of magnitude faster for small
values of bmax. While blocking often substantially reduces the
number of comparisons, it may also miss some duplicates that
fall in two different blocks.

A. New Opportunities for Blocking

The distributed representation of tuples enables a number of
novel approaches for tackling blocking in a turn-key fashion.
We observe that blocking is very related to the classical
problem of approximate nearest neighbor (ANN) search in a
similarity space, which has been extensively studied (see [21]).
Locality sensitive hashing (LSH) is a popular probabilistic
technique for finding ANNs in a high dimensional space. In
the blocking context, the more similar input vectors are, the
higher the probability that they both will be put in the same
block. While we are not the first to propose LSH for blocking
or automated tuning for blocking (see Section VII), we are
the first to propose a series of truly turn-key algorithms that
dramatically simplify the blocking process.

Challenges in Traditional Blocking Approach
• Identifying good blocking rules often requires the assis-

tance of domain experts.
• Typically, blocking rules consider only 2-3 attributes

which could result in comparing tuples that agree on those
attributes but have very different values for others.

• Prior blocking methods often do not take semantic simi-
larity between tuples into account.

• It is usually hard to tune the blocking strategy to control
the recall and/or the size of the blocks.

We can readily see that LSH for blocking over DR of
tuples obviates many of these issues. First, we free the
domain experts from providing a blocking function. Instead
the combination of LSH and DR transforms the problem of
blocking into finding tuples in a high dimensional similarity
space. Note that DR encodes semantic similarity into the
mix and that LSH considers the entire tuple for computing
similarity. The extensive amount of theoretical work on LSH
(see Section IV-E) can be used to both tune and provide
rigorous theoretical guarantees on the performance.

B. LSH Primer

Definition 1: (Locality Sensitive Hashing [22], [21]): A family
H of hash functions is called (R, cR, P1, P2)-sensitive if for
any two items p and q,
• if dist(p, q) ≤ R, then Prob[h(p) = h(q)] ≥ P1, and
• if dist(p, q) ≥ cR, then Prob[h(p) = h(q)] ≤ P2,

where c > 1, P1 > P2, h ∈ H. 2

The smaller the value of ρ (ρ = log(1/P1)
log(1/P2)

), the better the
search performance. For many popular distance measures such
as cosine, Euclidean, and Jaccard, there exists an algorithm

for the (R, c)-nearest neighbor problem that requires O(dn+
n1+ρ) space (where d is the dimensionality of p, q), O(nρ)
query time, and O(nρ log1/P2

n) invocations of hash functions.
In practice, LSH requires linear space and time [22], [21].

Implementing LSH. Given a table T , LSH seeks to index all
the tuples in a hash table that is composed of multiple buckets
each of which is identified by a unique hash code. Given a
tuple t, the bucket in which it is placed by a (single) hash
function h is denoted as h(t) - which is often a binary value.
If two tuples t and t′ are very similar, then h(t) = h(t′)
with high probability. Typically, one uses K hash functions
h1(t), h2(t), . . . , hK(t), hi ∈ H, to encode a single tuple t. We
represent t as a K dimensional binary vector which in turn is
represented by its hash code g(t) = (h1(t), h2(t), . . . , hK(t)).
Since the usage of K hash functions reduces the likelihood that
similar items will obtain the same (K dimensional) hash code,
we repeat the above process L times - g1(t), g2(t), . . . , gL(t).
Intuitively, we build L hash tables where each bucket in a hash
table is represented by a hash code of size K. Each tuple is
then hashed into L different hash tables where its hash codes
are g1(t), . . . , gL(t). For example, if K = 10 and L = 2,
every tuple is represented as a 10-dimensional binary vector
that is stored in 2 different hash tables.

Hash Families for Cosine Distance. Cosine similarity pro-
vides an effective method for measuring semantic similarity
between two DRs [7]. Since the distributed representations
can have both positive and negative real numbers, the cosine
similarity varies between −1 and +1. The family of hash
functions for cosine is obtained using the random hyperplane
method. Intuitively, we choose a random hyperplane through
the origin that is defined by a normal unit vector v. This
defines a hash function with two buckets where h(t) = +1
if v · t ≥ 0 and h(t) = −1 if v · t < 0 where · denotes the dot
product between vectors. Since we require K hash functions
h1, . . . , hK , we randomly pick K hyperplanes and each tuple
is hashed with them to obtain a K dimensional hash code.
This process is then repeated for all L hash tables.

C. LSH-based Blocking

We begin by generating hash codes h1, . . . , hK for each of
the L hash tables using the random hyperplane method. The set
of hash functions h1, . . . , hK is analogous to a single blocking
rule. The K dimensional binary hash code is equivalent to an
identifier to a distinct block where t falls into. Each hash table
performs “blocking” using a different blocking rule.

We index the distributed representation of every tuple t in
each of the L hash tables. LSH guarantees that similar tuples
get the same hash code (and hence fall into same block) with
high probability. Then, we consider each of the blocks for
every hash table and invoke the classifier over the distinct pairs
of tuples found in them. Algorithm 5 provides the pseudocode
of applying the classifier using this blocking approach.

Algorithm 5 is a fairly straightforward adaptation of LSH
to ER. As we shall show in experiments, it works well empir-
ically. However, the number of times a classifier would be in-



Algorithm 5 ER Classifier with LSH based Blocking
1: Input: Table T , training set S, L
2: Output: All matching tuple pairs in Table T
3: Generate hash functions for g1, . . . , gL using the random

hyperplane method
4: for each tuple t do
5: Index t into L hash tables using g1, . . . , gL
6: for each hash table g in [g1, . . . , gL] do
7: for each non-empty bucket H in g do
8: for each pair of tuples (ti, tj) in H do
9: Apply classifier on (ti, tj)

voked by this approach can be as much as O(L×b2max×Bmax)
where L is the number of hash tables, bmax is the size of the
largest block in any hash table and Bmax is the maximum
number of non-empty blocks in any hash table. While the
traditional LSH based approach is often efficient and effective,
one can achieve improved performance with some additional
domain knowledge. We next describe a sophisticated approach
to reduce the impact of L and bmax.

D. Multi-Probe LSH for Blocking

Recall that by increasing K, we ensure that the probability
of dissimilar tuples falling into the same block is reduced.
By increasing L, we ensure that similar tuples fall into the
same block in at least one of the L hash tables. Hence
while increasing L ensures that we will not miss a true
duplicate pair, it is achieved at the additional cost of making
extraneous com parisons between non-duplicate tuples. We
wish to come up with a LSH based approach that achieves two
objectives: (a) reduce the number of unnecessary comparisons
and (b) reduce the number of hash tables L without seriously
affecting recall.

Reducing Unnecessary Comparisons. Intuitively, we expect
duplicate tuples to have a high similarity with each other and
thereby more likely to be “near” each other. Hence, even if
a block has a large number of tuples, it is not necessary
to compare all pairs of tuples. Instead, given a tuple t, we
can retrieve the top-N nearest neighbors of t and invoke the
classifier between t and these N nearest neighbors. This can
be achieved by collating all the tuples that fall into the same
block as t in each of the L hash tables. We then compute the
similarity between t and each of the candidates and return the
top-N tuples. If the block is large with b tuples, then we only
require Θ(b×N) classifier invocations instead of Θ(b2). We
can see that by choosing N < b, we can achieve considerable
reduction in classifier invocations.

Reducing L. Naively decreasing the number of hash tables L
can decrease the recall as a pair of duplicate tuples might fall
into different blocks. The key idea is to augment a traditional
LSH scheme with a carefully designed probing sequence that
looks for multiple buckets (of the same hash table) that could
contain similar tuples with high probability. This approach is
called multi-probe LSH [23]. Consider a tuple t and another

very similar tuple t′. It is possible that t and t′ do not fall into
the same bucket (especially where K is large). However, due
to the design of LSH, we would expect that t′ fell into a “close
by” bucket whose hash code is very similar to the bucket
in which t fell. Multi-probe leverages this observation by
perturbing t is a systematic manner and looking at all buckets
in which the perturbed t fell into. By carefully designing the
perturbation process one can consider the buckets that have
the highest probability of containing similar tuples. It has
been shown that this approach often requires substantially less
number of hash tables (as much as 20x) than a traditional
approach [23]. Algorithm 6 provides the pseudocode of this
approach.

Algorithm 6 Approximate Nearest Neighbor based Blocking
1: Index all tuples using LSH
2: for each tuple t do
3: Get candidate tuples using Multiprobe-LSH
4: Sort tuples in candidates based on similarity with t
5: Invoke classifier on t and each of top-N neighbors of t

E. Tuning LSH Parameters for Blocking

In contrast to traditional blocking rules that are often heuris-
tics, the hash functions in LSH allow us to provide rigorous
theoretical guarantees. While the list of LSH guarantees is
beyond the scope of this paper (see [24] for details), we
highlight two major ones - the ability to tune the parameters
to achieve a predictable recall and occupancy rate by trading
off the indexing and querying time.

Parameter Tuning for Recall. Recall that we need to select
the parameters such that if two tuples are within a distance
threshold of R, then the probability of them hashing to the
same block in at least one hash table must be close to 1. On the
other hand, if the distance between two records is greater than
cR for some constant c, then the probability of them hashing
to the same block in at least one hash table must be close to
0. We can control the false positive and negative values (and
thereby recall) by varying the values of c and R, such as by
setting the values that get the best results for the tuples in the
training dataset. We can obtain a fixed approximation ratio of
c = 1 + ε by setting [21],

K =
log n

log 1/P2
L = nρ where ρ =

log(1/P1)

log(1/P2)
(1)

Parameter Tuning for Occupancy. LSH also allows us to
control the occupancy - the expected number of tuples in any
given block. This can be achieved by varying the size K of the
number of hash functions in every hash table. Informally, if
one uses multiple hash functions, we would expect very similar
items to be stored in the same blocks but at the expense of low
occupancy and a large number of blocks. On the other hand, a
smaller number of hash functions results in less similar tuples
being put in the same block. Intuitively, if we use only one
hash function, this results in 2 buckets - one for +1 and −1.
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Fig. 1. (a) Deep entity resolution framework; (b) Recurrent Neural Network with Long Short-Term Memory cells in the hidden layer.

Since the hyperplane for the hash function is chosen randomly,
we would expect each bucket to have an occupancy around
50% for all but most of the skewed data distributions. One
can reduce the occupancy rate by increasing the number of
hash functions. Alternatively, one can also use sophisticated
methods such as [25] to achieve guaranteed limits.

V. LEARNING AND TUNING REPRESENTATIONS

In Section III, we described how to build a classifier by
using pre-trained word vectors. In this section, we describe
how the performance DEEPER can be further improved by
obtaining or tuning representations that are customized for
the ER task. We begin by considering a number of practical
scenarios where ER is performed.

Scenario 1: General Datasets. Many of the benchmark
datasets used in ER [26] such as Citations, Products, Restau-
rants, and Movies, are often generic and do not require
any specialized knowledge. While they may be noisy and
incomplete, the content is often in English and use common
words. For such generic datasets, the approach that we have
proposed so far - convert pairs of tuples to similarity vectors
using GloVe - is often adequate. As we shall show in the
experiments, we obtain competitive results for all of them.

Scenario 2: Specialized Databases with Domain Knowl-
edge Repository. Another common scenario occurs when ER
is performed on a specialized database that might require
some domain knowledge. Examples include performing ER
on scientific articles for specialized fields or in data that is
specific to an organization. Often, one could use a vast corpus
of domain information in the form of unstructured data such as
documents. As an example, one could use articles in PubMed
for learning domain knowledge when deciding to perform

ER on biological articles or use the organization’s document
repository for ER on data in the same organization. In this
scenario, one can learn distributed representations using the
available tools such as GloVe[7], word2vec[6] or fastText[10],
where the training is done on the relevant corpus. Once trained,
the representation might encode some semantic similarity
whereby it might know that gene-A and gene-B are more
similar to each other than to gene-C. This approach also works
for multi-lingual data. Tools such as fastText[10] already
provide vector representations for almost 300 languages.

Scenario 3: Specialized Databases with No Domain Knowl-
edge Repository. Of course, the worst case scenario is a
specialized database where no auxiliary resources are available
to automatically learn the representation for key concepts. In
this scenario, any machine learning approach is doomed to fail
unless one provides hand crafted features or a substantially
large number of training examples that are sufficient for
learning representations using deep learning [6], [7], [10].

End-to-End Training

One crucial advantage of a DL framework is that it allows
us to fine-tune the pre-trained word representations (scenarios
1 and 2) or to learn word representations directly from
scratch starting from random initializations (scenario 3) for
a specific task. In general, fine-tuning of representations on
the task improves the accuracy [13]. This stems from the fact
that the pre-trained vectors such as Glove and word2vec are
learned through unsupervised methods that attempt to encode
semantic relationships between words by exploiting contextual
information (i.e., neighboring words). Therefore, these rep-
resentations often lack task-specific knowledge. Furthermore,
unsupervised pre-training on a large corpus gives the network



better generalization. In fact, this paradigm of unsupervised
pre-training followed by supervised fine-tuning often beats
methods that are based on only supervision [13].

Let us now consider our deep neural network in Figure
1. We train this network using Stochastic Gradient Descent
or SGD-based learning algorithms, where gradients (errors)
are obtained via backpropagation. In other words, errors in
the output layer are backpropagated through the hidden layers
using the chain rule of derivatives. For learning or fine-tuning
the embeddings, these errors are backpropagated till the word
embedding layer. One common issue with backpropagation
through a deep neural network (i.e., neural networks with
many hidden layers such as RNNs) is that as the errors get
propagated, they may soon become very small (a.k.a. gradient
vanishing problem) or very large (a.k.a. gradient exploding
problem) that can lead to undesired values in weight matrices,
causing the training to fail [27]. We did not observe such
problems in our end-to-end training with simple averaging
compositional method, and the gates in LSTM cells automat-
ically tackle these issues to some extent [28].

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

Hardware and Platform. All our experiments were per-
formed on a Core i7 6700HQ Skylake chip, with four cores
running eight threads at speeds of up to 3.5GHz, along with
16GB of DDR4 RAM and the GTX 980M, complete with
8GB of DDR5 RAM. We used Torch [29], a deep learning
framework, to train and test our models. Scikit-Learn [30] was
used to train the baseline SVM classifiers.

Datasets. We conducted extensive experiments over 4 different
datasets covering diverse domains such as citations and e-
commerce. Table I provides some statistics of these datasets.
All the datasets chosen are popular benchmark datasets and
have been extensively evaluated by prior ER work using both
ML and non-ML based approaches. We partition our datasets
into two categories: “easy” and “challenging”. The former
consists of datasets that are mostly structured and often have
less noise in terms of typos and missing information. On
the “easy” datasets most of the best existing ER approaches
routinely exceed an F-score of 0.9. The challenging datasets
often have unstructured attributes (such as product description)
and also noisy. On the “challenging” datasets that we study,
both ML and rule based methods have struggled to achieve
high F measures, with values between 0.6 and 0.7 being the
norm. What these two categories have in common is that
they require extensive effort from domain experts for cleaning,
feature engineering and blocking to achieve good results. As
we shall show later, our approach exceeds best existing results
on all the datasets with minimal expert effort.

DEEPER Setup. Our experimental setup was an adaptation
of prior ER evaluations methods [33], [5], [1] to handle
distributed representations. For example, [33] used an arbitrary
threshold (such as 0.1) on Jaccard similarity of trigram to

Dataset #Tuples #Duplicates #Attr
Walmart-Amazon
(Prod-WA)‡ [26] (2,554 - 22,074) 1,154 17
Amazon-Google
(Prod-AG)‡ [31] (1,363 - 3,226) 1,300 5
DBLP-Scholar
(Pub-DS)∗ [31] (2,616 - 64,263) 5,347 4

Fodors-Zagat
(Rest-FZ)∗ [32] (533 - 331) 112 7

TABLE I
DATASET STATISTICS - ∗ (EASY), ‡ (CHALLENGING)

eliminate tuple pairs that are clearly non-matches. We make
two changes to this procedure. First, we use Cosine similarity
to compute similarity between tuple pairs as it is more appro-
priate for distributed representations [6], [7]. Second, instead
of picking an arbitrary threshold, we set it to the minimum
similarity of matched tuple pairs in the training dataset. We
obtain the negative examples (non duplicates) by picking one
tuple from the positive example and randomly picking another
tuple from the relation that is not its match. For example, if
(ti, tj) is a duplicate, we pick a pair (tk, tl) as a negative
example such that (tk, tl) is not a duplicate already given in the
training data and has cosine similarity with (ti, tj) below the
above computed threshold. This approach is chosen to verify
the robustness of our models against near matches. For each
of the datasets, we performed K-fold cross validation with
K=5. We report the average of the F-measure values obtained
across all the folds. We observed that in all cases, the standard
deviation of the F-measure values was below 1%.

DEEPER Architecture. Since our objective is to highlight the
turn-key aspect of DEEPER, we choose the simplest possible
architecture. We use GloVe[7] as our distributed represen-
tation. Each tuple is represented as a m × d dimensional
vector where m is the number of attributes with d being the
dimension of distributed representations. For each attribute,
we apply a standard tokenizer and average the DR obtained
from GloVe (as against more sophisticated approaches such as
Bi-LSTM). Given a pair of tuples, the compositional similarity
is computed as the Cosine similarity of the corresponding
attributes resulting in a m dimensional similarity vector. As
mentioned above, we used K-fold validation with a duplicate
to non-duplicate ratio of of 1:100 that is comparable to
the ratio used by competing approaches. Note that the non-
duplicates are sampled automatically. We also do not tune the
DR for the ER task. Even with this restricted setup, DEEPER
is competitive with competing approaches. In Section VI-D,
we systematically vary each of these components of DEEPER
architecture and show that each of them improves the perfor-
mance further.

B. Evaluating DEEPER
We conducted an extensive set of experiments that show that

distributed representations is a promising approach to build
turn-key ER systems. The key questions that we seek to answer
with our evaluation are:



Dataset Magellan DEEPER F-Measure (Published)
Precision Recall F-Measure Precision Recall F-Measure

Prod-WA 80.705 85.435 82.99 83.61 93.035 88.06 89.3 [34] (Crowd)
Prod-AG 79.92 97.11 87.68 96.68 95.38 96.029 62.2 [5] (ML)
Pub-DS 98.02 99.67 98.84 99.08 96.3 97.67 92.1 [34] (Crowd)
Rest-FZ 100 100 100 100 100 100 96.5 [34] (Crowd)

TABLE II
COMPARING THE PERFORMANCE OF DEEPER WITH STATE-OF-THE-ART PUBLISHED RESULTS FROM EXISTING RULE BASED, ML BASED AND CROWD

BASED APPROACHES. WE ALSO COMPARED AGAINST MAGELLAN [2], ANOTHER END-TO-END EM SYSTEM.

• How does the performance of DEEPER compare against
published state-of-the-art results from traditional ML, rule
and crowd based approaches?

• How does DEEPER compare against similar end-to-end
EM pipelines such as Magellan [2]?

• How does the performance of DEEPER improve when
we augment its simple architecture with enhancements
such as tuning representations and using sophisticated
compositional approaches?

• How does LSH based blocking approaches work in
practice?

C. Comparison with Existing Methods

In our first set of experiments, we first compare the per-
formance of DEEPER with the best reported results from
prior work. We consider non-learning, learning and crowd
based approaches from [5], [34], [35]. Table II shows the
F-measure values for both DEEPER and the best published
result. These referenced F-scores represent the best effort from
the respective authors and the simple DEEPER architecture is
competitive with them.

Recall that performing ER on a large dataset requires a
number of design choices from the expert such as feature
engineering, selection of appropriate similarity functions and
thresholds, parameter tuning for ML models, selection of ap-
propriate blocking functions, and so on. Hence, it is incredibly
hard to take any of the existing approaches and apply it as-is
on a new dataset. A key advantage of DEEPER is the ability
to dramatically reduce this effort. In order to highlight this
feature, we evaluated DEEPER against Magellan [2] that also
has a end-to-end EM pipeline. We would like to emphasize that
both DEEPER and Magellan share the dream of making the
EM process as frictionless as possible. While Magellan uses a
series of sophisticated heuristics internally, DEEPER leverages
distributed representations as a foundational technique. It is
very easy to incorporate features from DEEPER and Magellan
to each other. For example, one can augment Magellan’s
automatically derived similarity based features to DEEPER
while Magellan can readily use the blocking of DEEPER and
so on. Table II compares the performance of default settings of
DEEPER and Magellan. Specifically, we adapted the end-to-
end EM workflow for Magellan [36]. We can see that DEEPER
beats Magellan on two datasets, while performing slightly
worst in one datasets. Both systems delivered perfect results
in the rather simple Fodors-Zagat dataset.

D. Understanding DEEPER Performance

In this section, we investigate how each of the enhancements
to the basic DEEPER architecture impacts its performance.
Specifically, we consider 4 dimensions - training data size,
fraction of incorrectly labeled training dataset, tuning of DR
and the compositional approach used. Hence, we compare the
performance of DEEPER with and without the said modifica-
tion. For this subsection, we use a positive to negative ratio
of 1:4.

Varying the Size of Training Data. Figure 2 shows the results
of varying the amount of training data. DEEPER is robust
enough to be competitive with competing approaches with as
little as 10% of training data. Note that 10% translates to as
little as 11 examples that needs to be labeled in the case of
Rest-FZ and to 543 in the case of Pub-DS. As expected, our
method improves its excellent results with larger training data.

Impact of Incorrect Labels. Most of the prior work on
ER assume that the training data is perfect. However, this
assumption might not always hold in practice. Given the
increasing popularity of crowdsourcing for obtaining training
data, it is likely that some of the labels for matching and
non-matching pairs are incorrect. We investigate the impact of
incorrect labels in this experiment. For a fixed set of training
data (10%), we vary the fraction of labels that are marked
incorrectly. Figure 3 shows the results. While the F-measure
reduces with larger fraction of incorrect labels, the experiments
also show that our approach is very robust. The average drop in
F-measure values compared to the perfect labeling case across
all datasets at 10% noise is just 2.6 with a standard deviation of
2.6. At 30% the average drop is 8% with a standard deviation
of 7%. We can also see that at 10% noising, our approach is
still competitive with state-of-the-art approaches.

Dynamic vs Static Word Embeddings. In this set of
experiments, we evaluated the effect of updating (or fine-
tuning) the initial word embeddings obtained from GloVe as
part of training the model. In other words, we evaluated if
tuning the distributed representation for ER tasks improves
the performance of our model. Figure 4 shows the results.
The results matched our intuition that for the “challenging”
datasets, updating the word embeddings in an end-to-end
learning framework helped boost the results a little, whilst
for the “easy” ones, it had either a small negative effect or no
effect at all. Thus, we advise that in general, it is better to use
the end-to-end framework.
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Varying Composition. In this set of experiments, we vary
the compositional method we use to combine the individual
word embeddings into a single representative vector for the
tuple/attribute. Figure 5 shows that for the “easy” datasets,
simple word averaging work better than recurrent composi-
tional models (LSTM or BiLSTM). This flips for the “chal-
lenging” datasets. Intuitively, this is due to the importance of
word order dependency in values of attributes like product
names or product description, and that observing such order
is either immaterial or rather hurtful for values of attributes
like the list of authors. In order to use the more complex
compositional methods (LSTM or BiLSTM) one has to pay
the price of its longer training times, one also has to tune
its additional hyperparameters. However, even the simple
averaging compositional technique is competitive with prior
approaches on all datasets.

E. Evaluating LSH based Blocking

In this subsection, we evaluate the performance of our LSH
based blocking approach. Our approach allows us to vary K
(the size of the hash code) and L (the number of hash tables) in
order to achieve a tunable performance. Recall that one can use
Equation 1 to derive K and L based on the task requirements.
Suppose we wish that similar tuples should fall into same

bucket with probability P1 = 0.95 and dissimilar tuples should
fall into the same bucket with probability P2 ≤ 0.5. Suppose
that we index the DBLP dataset of Pub-DS. Then based on
Equation 1, we need a LSH with K = 12 and L = 2.

In our first set of experiments, we verify that the behavior
of blocking is synchronous with the theoretical expectations.
We evaluate the performance of blocking based on two metrics
widely used in prior research [19], [20], [37]. The first metric,
efficiency or reduction ratio (RR), is the ratio of the number
of tuple pairs compared by our approach to the number of all
possible pairs in T . In other words, a smaller value indicates
a higher reduction in the number of comparisons made. The
second metric, recall or pair completeness (PC), is the ratio
of the number of true duplicates compared by our approach
against the total number of duplicates in T . A higher value for
PC means that our approach places the duplicate tuple pairs
in the same block.

Figures 6(a)-6(d) shows the results of our experiments. As
K is increased, the value of PC decreases. This is due to the
fact that for a fixed L, increasing K reduces the likelihood
that two similar tuples will be placed in the same block which
in turn reduces the number of duplicates that falls into the
same block. However, for a fixed L, increasing K dramatically
decreases the RR. This is to be expected as a larger value of
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Fig. 6. Impact of varying K and L on Pair Completeness (PC) and Reduction Ratio (RR). Legend for Figures 6(b)-6(d) is same as that of Figure 6(a)

K increases the number of LSH buckets into which tuples can
be assigned to.

A complementary behavior can be observed when we fix K
and vary L. When L is increased, PC also increases. This is
to be expected as the probability that two similar tuples being
assigned to the same bucket increases when more than one
hash table is involved. In other words, even if a true duplicate
does not fall into the same bucket in one hash table, it can fall
into the same bucket in other hash tables. However, increasing
L has a negative impact on RR as a number of false positive
tuple pairs can fall into the same bucket in at least one hash
table thereby increasing the value of RR.

Evaluating Multi-Probe LSH. We evaluate Algorithm 6
using Multi-probe and comparing a tuple only with top-N
most similar tuples instead of all tuples in a block. Figure 7
shows the result for Pub-AG. We vary the number of multi-
probes and pick the top-N most similar tuples to be classified.
We measure the recall of this approach for K = 10 and an
extreme case with a single hash table where L = 1. We wish
to highlight two trends. First, even using a single multi-probe
sequence can dramatically increases the recall. This supports
our claim that one can increase recall using a small number
of hash tables by using multi-probe LSH. Second, increasing
the size of N does not dramatically increase the recall. This
is due to the fact that duplicate tuples have high similarity
between their corresponding distributed representations. Our
top-N based approach would be preferable to reduce the
number of classifier invocations when the block size is much
higher than 10.
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VII. RELATED WORK

Entity Resolution. A good overview of ER can be found in
surveys such as [4], [3]. Prior work on ER can be categorized
as based on (a) declarative rules, (b) machine learning, and (c)
expert or crowd based. Declarative rules such as DNF [9] that
specify rules for matching tuples are easily interpretable [1]
but often requires a domain expert. Most of the machine
learning approaches are variants of the classical Fellegi-Sunter
model [8]. Popular approaches include SVM [9], active learn-
ing [38], clustering [39]. Recently, ER using crowdsourcing
has become popular [40], [34]. While there exist some work
for learning similarity functions and thresholds [9], [41], ER
often requires substantial involvement of the expert.

There has been extensive work on building EM systems.
Please refer to [2] for a comprehensive survey of the current
EM systems. Most of the prior works often do not cover the
entire EM pipeline, require extensive interaction with experts
and are not turn-key systems. The key objective of DEEPER is
the same as Magellan [2]. We aim to propose a end-to-end EM
system based on distributed representations that minimizes the
burden on the experts. Our techniques are modular enough and
can be easily incorporated into any of the existing systems.

Blocking. Blocking has been extensively studied as a way
to scale ER systems and a good overview can be found in
surveys such as [19], [20]. Common approaches include key
based blocking that partitions tuples into blocks based on their
values on certain attributes and rule based blocking where a
decision rule determines which block a tuple falls into. There
has been limited work on simplifying this process by either
learning blocking schemes such as [37] or tuning the blocking
[42]. In contrast, our work automates the blocking process by
requiring minimal input from the domain expert.

There has been some recent work on using LSH for block-
ing. [24] uses MinHashing where tuples with high Jaccard
similarity with each other are likely to be assigned to the
same block. [43] improves it by proposing a MinHashing
with semantic similarity based on concept hierarchy to assign
conceptually similar tuples to the same block. Our approach
based on distributed representation does not require such tax-
onomy and can handle more sophisticated semantic similarity
than [43]. [44] proposed a clustering based method to satisfy
size constraints with upper and lower size thresholds for blocks
for performance and privacy reasons. We leverage the prior
work on tuning of LSH hash functions for occupancy rates



for achieving similar behavior on expectation.

Deep Learning. A good overview of deep learning can
be found in [11]. We leverage two fundamental ideas from
Deep Learning - Distributed Representations [12] and Com-
positions [45]. There are a number of popular and open
source distributed representation techniques such as GloVe [7],
word2vec [46], [6] and fastText [10]. Since distributed vectors
are often defined for words, one has to use composition to
obtain distributed representations for complex objects such as
phrases [6], sentences [47] and documents [47].

VIII. FINAL REMARKS

In this paper, we introduced DEEPER, a deep learning based
approach for entity resolution. Our fundamental contribution is
the identification of the concept of distributed representation as
a key building block for designing effective ER classifiers. We
also propose algorithms to transform a tuple to a distributed
representation, building DR aware classifiers and an efficient
blocking strategy based on LSH. Our extensive experiments
show that this approach is promising and already achieves
or surpasses state-of-the-art results on multiple benchmark
datasets. We believe that deep learning is a powerful tool that
has applications in databases beyond entity resolution and it
is our hope that our ideas be extended to build practical and
effective entity resolution systems.
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