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Abstract—Data visualization, which transforms data into im-
ages to make nearly anyone easily understand the data, is
invaluable for explaining the significance of data to people who
are more visually oriented. The central task of automatic data
visualization is, for a given dataset, to visualize its compelling
stories by transforming the data (for example, selecting attributes,
grouping and binning values) and deciding the right type of
visualization (for example, bar charts or line charts).

We present DEEPEYE, a novel system for automatic data vi-
sualization that tackles three problems: (1) Visualization recogni-
tion: given a visualization, is it “good” or “bad”? (2) Visualization
ranking: given two visualizations, which one is “better”? And
(3) Visualization selection: given a dataset, how to find top-
k visualizations? DEEPEYE addresses (1) by training a binary
classifier to decide whether a particular visualization is good or
bad. It solves (2) from two perspectives: (i) Machine learning:
it uses a supervised learning-to-rank model to rank visualiza-
tions; and (ii) Expert rules: it relies on experts’ knowledge to
specify partial orders as rules. Moreover, a “boring” dataset
may become interesting after data transformations (e.g., binning
and grouping), which forms a large search space. We also
discuss optimizations to efficiently compute top-k visualizations,
for approaching (3). Empirical results, using real-life data and
real use cases, verify the power of DEEPEYE in automatically
generating meaningful visualizations.

I. INTRODUCTION

A picture is worth a thousand words. A good visualization
is worth a terabyte of data. Nowadays, the ability to create
good visualizations has shifted from a nice-to-have skill to a
must-have skill for all data analysts to help managers make
business decisions, where data is the primary force behind for
its high volume and overwhelming velocity. Consequently, this
high demand has nourished a remarkable series of empirical
successes both in industry (for example, Tableau and Microsoft
Excel), and in academia (for example, DeVIL [27], ZQL [19],
SeeDB [22], [21], and zenvisage [18], [19]).

The current data visualization tools (e.g., Tableau and
Microsoft Excel) have allowed users to easily create visual-
izations, only if users know their data well, such as which
attributes to use, which chart is appropriate. Besides, the users
should be familiar with the used visual grammar/language, and
(possibly) manually try different data transformations (e.g.,
selecting attributes, and grouping/binning values).

Ideally, visualization tools should automatically generate
visualizations, so the users can pick interesting ones even if
they are not familiar with the data, and use the tools (e.g.,
Tableau) for fine tuning. This is hard, if not impossible, since
among numerous issues, no consensus has emerged to quantify
the goodness of a visualization that captures human perception.

A.
scheduled

B.
carrier

C. destination
city name

D. departure
delay (min)

E. arrival
delay (min)

F.
passengers

01-Jan 00:05 UA New York -4 1 193
01-Jan 04:00 AA Los Angeles 0 -2 204
01-Jan 06:13 MQ San Francisco 7 -11 96
01-Jan 07:33 OO Atlanta 11 -2 112
01-Jan 09:40 EV Minneapolis 12 18 97
01-Jan 11:10 AA Boston 22 10 131
01-Jan 14:43 UA Dallas 13 23 240
01-Jan 16:59 MQ New York 10 13 252
01-Jan 20:05 AA Dallas 5 3 185
01-Jan 23:16 UA Los Angeles 0 -1 109

· · · · · · · · · · · · · · · · · ·
TABLE I

AN EXCERPT OF FLIGHT DELAY STATISTICS

Technically speaking, “interesting” charts can be defined
from three angles: (1) Deviation-based: a chart that is dramat-
ically different from the other charts (e.g., SeeDB [21]); (2)
Similarity-based: charts that show similar trends w.r.t. a given
chart (e.g., zenvisage [18]); and (3) Perception-based: charts
that can tell compelling stories, from understanding the data,
without being compared with other references.

“If I had an hour to solve a problem I’d spend 55 minutes thinking
about the problem and 5 minutes thinking about solutions.”

– Albert Einstein

Although (1) and (2) can be quantified formally, by sta-
tistical deviations and correlations, respectively, our 55 min-
utes thought is to study (3) despite the known hardness of
quantifying human perception. The reason for our choice is
evident, (3) is highly required in practice: users in many
applications simply need to find eye-catching and informative
charts, regardless of whether they are different from (i.e.,
deviation-based) or similar to (i.e., similarity-based) other
charts. The bad news is that users have poor choices for (3).

Example 1: Consider a real-world table about flight delay
statistics of Chicago O’Hare International (Jan – Dec, 2015),
with an excerpt in Table I (from: https://www.bts.gov). Natu-
rally, the Bureau of Transportation Statistics wants to visualize
some valuable insights of the data, such as (i) which carrier
has the most delays in departures and arrivals? (ii) what is the
number of passengers that travel to where and when? and (iii)
when is likely to have more departure delays?

Figure 1 shows sample visualizations DEEPEYE considers
for the entire table. Some are from real use cases (from https:
//www.transtats.bts.gov/airports.asp?pn=1).

(i) Figure 1(a) is a scatter plot, with x-axis: D.departure
delay, y-axis: E.arrival delay, and plots grouped (and
colored) by “ B.carrier”. It shows clearly the arrival delays
w.r.t. departure delays for different carriers, e.g., the carrier OO
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(c) Flight delay w.r.t. scheduled time
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Fig. 1. Sample visualizations for the Flight Delay Statistics table

is bad due to its long departure and arrival delays.
(ii) Figure 1(b) is a stacked bar chart, with x-axis:
A.scheduled binned by month, y-axis: the aggregated
number of E.passengers in each month that is further cat-
egorized (or stacked) by C.destination city. It shows
the number of passengers travelled to where and when.
(iii) Figure 1(c) is a line chart, with x-axis: A.scheduled
binned by hour, which means the rows with the same sched-
uled hour are in the same bucket, y-axis: the average of
D.departure delay. It shows when is likely to have more
departure delays, e.g., it has long delays in late afternoon.
(iv) Figure 1(d) is a line chart, with x-axis: A.scheduled
binned by date, y-axis: the average of D.departure
delay. It shows the range of delays, without any trend. 2

We have conducted a user study with researchers with
CS and Visualization background. They all agree that Fig-
ures 1(a)–1(c) are good, but Figure 1(d) is bad because it does
not follow any distribution and basically cannot tell anything.

Problems. DEEPEYE deals with three problems.
1. Visualization Recognition. How to capture human percep-
tions about whether a visualization is good or bad?
2. Visualization Ranking. Is that possible to rank visualizations
to say which one is better?
3. Visualization Selection. In practice, it often needs to show
multiple (or top-k) visualizations that, when putting them
together, can tell compelling stories of the data at hand.

Challenges. DEEPEYE faces three main research challenges.
I. Capturing Human Perception. There is no consensus to
quantify that which visualization is good, better, or the best?
II. Large Search Space. Sometimes, visualizing a dataset as-
is cannot produce any interesting output. Appearances can,
however, be deceiving, when the stories reside in the data after
being transformed, such as selections for columns, groups,
bins, and aggregations – these create a huge search space for
possible visualizations. Moreover, the potential large size of
the dataset makes the computation expensive.
III. Lack of Ground Truth. Finding good visualizations is a
mining task. Unfortunately, a benchmark or the ground truth
of a given dataset is often unavailable.

Intuitively, there are two ways of capturing human percep-
tion for Challenge I: (A) Learning from examples – there
are plenty of generic priors to showcase great visualizations.
(B) Expert knowledge, e.g., a bar chart with more than 50
bars is clearly bad. Challenge II is a typical database opti-

mization problem that techniques such as pruning and other
optimizations can play a role. For Challenge III, fortunately,
there are online tables accompanied with well-designed charts,
which will be naturally treated as good charts. We also ask
researchers to manually annotate good charts, and rank charts,
and use the majority consensus to find the “ground truth”.

Contributions. We have built DEEPEYE and made it available
as a web service (http://deepeye.tech). It has also been used
by Data Civilizer [4] for understanding table semantics.

We summarize our contributions as follows.

� We approach Visualization Recognition by training binary
classifiers to determine whether to visualize a given dataset
with a specific visualization type (e.g., bar charts or line charts)
is meaningful.

� We solve Visualization Ranking from two perspectives.
We use a supervised learning-to-rank model to leverage the
success of machine learning algorithms. We also propose a
partial order-based approach (using e.g., attribute importance,
attribute correlation) such that experts can declaratively specify
their domain knowledge.

� We tackle Visualization Selection by presenting a graph
based approach, as well as rule-based optimizations to effi-
ciently compute top-k visualizations by filtering bad visual-
izations that do not need to be considered.

� We conduct experiments using real-world datasets, and
visualization use cases, to show that DEEPEYE can efficiently
discover interesting visualizations to tell compelling stories.

Organization. Section II formalizes the problems and
overviews DEEPEYE. Section III presents ML-based solutions.
Section IV describes partial order-based visualization selec-
tion. Section V discusses optimizations. Section VI presents
empirical results. Section VII discusses related work. Sec-
tion VIII closes the paper by concluding remarks.

II. OVERVIEW

We first introduce preliminaries (Section II-A). We then
define a visualization language to facilitate our discussion
(Section II-B). Finally, we overview DEEPEYE (Section II-C).

A. Preliminaries

We consider a relational table D, defined over the scheme
R(A1, . . . , Am) with m attributes (or columns).

We study four widely used visualization types: bar charts,
line charts, pie charts, and scatter charts.

We consider the following three types of data operations.

2



VISUALIZE TYPE (∈ {bar, pie, line, scatter})
SELECT X ′, Y ′ (X ′ ∈ {X, BIN(X)}, Y ′ ∈ {Y, AGG(Y )})
FROM D
TRANSFORM X (using an operator ∈ {BIN, GROUP})
ORDER BY X ′, Y ′

Fig. 2. Visualization language (two columns)

1. Transform. It aims to transform the values in a column to
new values based on the following operations.
• Binning partitions the numerical or temporal values into

different buckets:
– Temporal values are binned by minute, hour, day,

week, month, quarter, year, whose data type can be
automatically detected based on the attribute values.

– Numerical values are binned based on consecutive
intervals, e.g., bin1[0, 10), bin2[10, 20), . . .; or the
number of targeted bins, e.g., 10 bins.

• Grouping groups values based on categorical values.

2. Aggregation. Binning and grouping are to categorize data
together, which can be consequently interpreted by aggregate
operations, SUM (sum), AVG (average), and CNT (count), for the
data that falls in the same bin or group. Hence, we consider
three aggregation operations: AGG = {SUM, AVG, CNT}.
3. Order By. It sorts the values based a specific order.
Naturally, we want some scale domain, e.g., x-scale, to be
sorted for easy understanding of some trend. Similarly, we
can also sort y-scale to get an order on the y-axis.

B. Visualization Language

To facilitate our discussion, we define a simple language that
can capture all possible visualizations studied in this paper. For
simplicity, we first focus on visualizing two columns.

Figure 2 shows our language for specifying visualization
queries for two columns.

Each query contains three mandatory clauses (VISUALIZE,
SELECT, and FROM in bold) and two optional clauses
(TRANSFORM and ORDER BY in italic). They are further
explained below.
� VISUALIZE: specifies the visualization type
� SELECT: extracts the selected columns
• X ′/Y ′ relates to X/Y : X ′ is either X or binning values,

e.g. binning by hour; Y ′ is either Y or the aggregation
values (e.g., AGG={SUM, AVG, CNT}) after transforming X

� FROM: the source table
� TRANSFORM: transforms the selected columns
• Binning

– BINX BY {MINUTE, HOUR, DAY, WEEK, MONTH, QUARTER,
YEAR}.

– BIN X INTO N , where N is the targeted #-bins.
– BIN X BY UDF(X), where UDF is a user-defined

function, e.g., splitting X by given values (e.g., 0).
• Grouping: GROUP BY X

� ORDER BY: sorts the selected column, i.e., ORDER BYX ′/Y ′

D

X Y

X' Y'

G

G GROUP BY B BINNING ∅ NO TRANSFORM

S SUM A AVGC COUNT

B S A C

O ORDER BY

X'' Y''

O O

BAR PIE SCATTER

FROM

SELECT

TRANSFORM

ORDER BY

VISUALIZE LINE

∅∅

Fig. 3. Search space for two columns

Example 2: One sample query Q1 is given below, which is
used to visualize Figure 1(c). 2

Q1 : VISUALIZE line
SELECT A.scheduled,AVG(D.departure delay)
FROM TABLE I
BIN A.scheduled BY HOUR
ORDER BY A.scheduled

Each query Q over D, denoted by Q(D), will produce a
chart, which is also called a visualization.

Search Space. Given a dataset D, there exist multiple visu-
alizations. All possible visualizations form our search space,
which is shown in Figure 3 for two columns.

Let’s elaborate Figure 3 in a bottom-up fashion.
� SELECT can take any ordered column pairs (i.e., XY and
Y X are different), which gives m2.
� TRANSFORM can either group by X , bin X (we have 9
cases, e.g., by minute, hour, day, week, month, quarter, year,
default buckets and UDF), or do nothing; and aggregate Y using
different operations. Thus there are (1+9+1)×4 = 44 cases
for each column pair.
� ORDER BY can order either column X ′, column Y ′, or
neither: these give 3 possibilities. Note that we cannot sort
both columns at the same time.

Together with the four visualization types we consider, the
number of all possible visualizations for two columns is: m2×
44 × 4 × 3 = 528 m2, which is fairly large for wide tables
(i.e., the number of columns m is large).

Extension to Support One Column and Multiple Columns.
Our techniques can be easily extended to support one column
and multiple columns. For one column, we can do group/bin
on the column. In this case, CNT can be applied for the data
falling into the same group/bin. So there are (1+9+1)×2 = 22
cases for transformation. Also, ORDER BY can work either
on X ′, on Y ′, or does not sort any column. Hence, the search
space for one column is m× 22× 4× 3 = 264 m.

For multiple columns, there are two cases. (i) There are one
column X on x-axis, and multiple columns Y1, · · · , Yz on y-
axis (2 ≤ z ≤ m − 1). The query aims to compare the Yi

3
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Fig. 4. Overview of DEEPEYE

columns for 1 ≤ i ≤ z. There are m cases for x-axis, and∑m−1
i=2

(
i
m

)
cases for y-axis. So the search space for this case

is m × (1 + 9 + 1) ×
∑m−1

i=2 4i ×
(
i
m

)
× 4 × (1 + i + 1) =

44m(i+ 2)
∑m−1

i=2 4i
(
i
m

)
. (ii) There are three columns X , Y

and Z.We first group the data by X , and for each group, do
group/bin on Y , which is used for the x-axis. We then calculate
SUM, AVG, CNT of the Z data that falls in the same group/bin as
the y-axis. There are m3 cases for column selection. For each
selection, there are 44 cases for transformation of Y and Z.
Also, we can sort the data by X ′, Y ′, Z ′, or does not sort any
column. Thus the search space is m3 × 44× 4× 4 = 704m3.
C. An Overview of DEEPEYE

Given the large search space for possible visualizations, it
is evident that even those data analysts who are familiar with
visualization tools cannot afford to examine them manually
for visualization recognition and selection. This highlights the
demand for a system, such as DEEPEYE, that can navigate
this search space and automatically select visualizations.

An overview of DEEPEYE is given in Figure 4, which
consists of an offline component and an online component.
Offline component relies on examples – good visualizations,
bad visualizations, and ranks between visualizations – to
train two ML models: a binary classifier (e.g., a decision
tree) to determine whether a given dataset and an associated
visualization is good or not, and a learning-to-rank model that
ranks visualizations (see Section III for more details). This
process is done periodically when there are more examples
available. Alternatively, experts may specify partial order as
rules based on their knowledge to rank visualizations, which
will be discussed in Section IV.
Online component identifies all possible visualizations, uses
the trained binary classifier to determine whether a visualiza-
tion is good or not, employs either the learning to rank model
or expert provided partial orders to select top-k visualizations,
which will be further discussed in Sections IV and V.

III. MACHINE LEARNING-BASED VISUALIZATION
RECOGNITION, RANKING, AND SELECTION

A natural way to capture human perception for visualization
recognition and ranking is by learning from examples. The

hypothesis about what are learned from generic priors can be
applied to different domains is that the explanatory factors
behind the data for visualization is not domain specific, e.g.,
pie charts are best used when making part-to-whole compar-
isons (for example, the number of passengers by carrier UA
compared to other carriers).

We have collected many tables that can be used for mean-
ingful visualizations. Some of these tables are associated with
well designed charts, which can be used directly as good
examples. We have also generated charts and asked researchers
to manually label good/bad charts, as well as ranking the charts
for the same column combinations.

Features. It is known that the performance of machine learning
methods is heavily dependent on the choice of features (or data
representation) on which they are applied. Much of our effort
goes into this feature engineering to support effective machine
learning. We identify the following features F.
(1) The number of distinct values in column X , d(X).
(2) The number of tuples in column X , |X|.
(3) The ratio of unique values in column X , r(X) = d(X)

|X| .

(4) The max(X) and min(X) values in column X .
(5) The data type T(X) of column X:
• Categorical: contains only certain values, e.g., carriers.
• Numerical: contains only numerical values, e.g., delays.
• Temporal: contains only temporal data, e.g., date.
◦ We also use abbreviations: Cat for categorical, Num for

numerical, and Tem for temporal.

(6) The correlation of two columns, c(X,Y ), is a value
between -1 and 1. The larger the value is, the higher correlation
the two columns have. We consider linear, polynomial, power,
and log correlations. We take the maximum value among these
four cases as the correlation between X and Y .
(7) The visualization type: bar, pie, line, or scatter charts.

For two columns X,Y , we have the above features (1–5)
for each column, which gives 6 × 2 = 12 features; together
with (6) and (7), we have a feature vector of 14 features.

Note that it is fairly efficient to compute these features,
and the time complexity is O(N) where N is the number of
tuples in the table. Next we will discuss the ML models using
training dataset and the features F mentioned above.

Visualization Recognition. The first task is, given a column
combination of a dataset and a specified visualization type,
to decide whether the output (i.e., the visualization node) is
good or bad. Hence, we just need a binary classier, for which
we used decision trees [14]. We have also tested Bayes [15]
classifier and SVM [5], and the decision tree outperforms
SVM and Bayes (see Section VI for empirical comparisons).

Visualization Ranking. The other task is, given two visual-
ization nodes, to decide which one is better, for which we use
a learning-to-rank [1] model, which is an ML technique for
training the model in a ranking task, which has been widely
employed in Information Retrieval (IR), Natural Language
Processing (NLP), and Data Mining (DM).

4



Roughly speaking, it is a supervised learning task that takes
the input space X as lists of feature vectors, and Y the output
space consisting of grades (or ranks). The goal is to learn a
function F (·) from the training examples, such that given two
input vectors x1 and x2, it can determine which one is better,
F (x1) or F (x2). We used the LambdaMART algorithm [2].

Visualization Selection. Learning to rank model can be used
directly for the visualization selection problem: given a set
of visualization nodes (and their features vectors) as input,
outputs a ranked list.

Remarks. Using ML models as black-boxes has two short-
comings. (1) They may not capture human perception as
precise as experts in some aspects, e.g., there are not enough
examples for comparing visualizations for different columns;
and (2) It is hard to improve search performance of black-
boxes. Taking (1) and (2) into consideration, expert knowledge
should be leveraged when it can be explicitly specified.

IV. PARTIAL ORDER-BASED VISUALIZATION SELECTION

Note that our target is to compute top-k visualizations,
which requires a ranking for all possible visualizations. Ide-
ally, we expect a total order of visualizations such that the
top-k can be trivially identified. However, it is hard to define
a total order, because two visualizations may not be directly
comparable. A more feasible way, from the user perspective,
is to specify partial orders for comparable visualizations.
Afterwards, we can obtain a directed graph representing the
partially ordered set of visualizations (a.k.a. a Hasse diagram).

In the following, we first discuss the ranking principle
(Section IV-A), and then define partial orders (Section IV-B).
Finally, we present an algorithm to compute top-k visualiza-
tions based on the partial order graph (Section IV-C).

A. Visualization Ranking Principle

Definition 1: [Visualization Node.] A visualization node con-
sists of the original data X,Y , the transformed data X ′, Y ′, a
set of the features F, and the visualization type T. 2

Given two nodes Q1 and Q2, we use X1/Y1 (resp. X2/Y2)
to denote the two columns of Q1 (resp. Q2), and X ′1/Y

′
1 (resp.

X ′2/Y
′
2 ) to denote the transformed columns.

We consider three cases, based on different possibilities of
columns shared between two visualizations.

Case 1. X1 = X2 and Y1 = Y2: they have the same
original data. Again, we consider two cases, (I) the same
transformed data (i.e., X ′1 = X ′2 and Y ′1 = Y ′2 ) and (II)
different transformed data (X ′1 6= X ′2 or Y ′1 6= Y ′2 ).

(I) X ′1 = X ′2 and Y ′1 = Y ′2 : we adopt the techniques from the
visualization community to rank visualizations [12], [11].

(i) X ′1 and X ′2 are categorical: pie/bar charts are better than
scatter/line charts, because the latter two focus on the
trend and correlation between X and Y .
– If Y ′1 and Y ′2 are obtained by AVG, then bar charts are

better, because pie charts are best used when making

part-to-whole comparisons but we cannot get part-to-
whole ratio by the AVG operation.

– It would be better to use bar charts if there are many
categories (for example, ≥ 10), because it is hard to
put many categories in a single pie chart.

– If min(Y ′1) < 0, pie charts are not applicable.
(ii) X ′1 and X ′2 are numerical: scatter/line charts are better

than pie/bar charts.
– If there is a correlation between X ′ and Y ′, then scatter

charts are better, because the scatter plot is simply a set
of data points plotted on an x and y axis to represent
two sets of variables. The shape those data points create
tells the story, most often revealing correlation (positive
or negative) in a large amount of data.

– If there is no correlation, line charts are better, because
line charts show time-series relationships using contin-
uous data (which is measured and has a value within a
range). Line charts allow a quick assessment of acceler-
ation (lines curving upward), deceleration (lines curv-
ing downward), and volatility (up/down frequency).
Line charts are also excellent for tracking multiple data
sets on the same chart to see any correlation in trends.

Observed from Case 1(I), we need to consider a factor to
rank different charts. Factor 1- The matching quality between
the data and charts: whether the charts can visualize the
inherent features of the data, e.g., trend, correlation.

(II) X ′1 6= X ′2 or Y ′1 6= Y ′2 : they have different transformed
data. Typically, the smaller the cardinality of the transformed
data, the better.

We consider another factor from Case 1(II). Factor 2 - The
quality of transformation operations: whether the transforma-
tion operators make sense.

Case 2: X16=X2 or Y16=Y2, and {X1, Y1}∩{X2, Y2}6=∅: They
share a common column. Intuitively, for different columns, a
user is more interested in visualizing an “important column”.
We consider another factor based on Case 2. Factor 3 - The
importance of a column: whether it is important to visualize.

Case 3: {X1, Y1}∩{X2, Y2} = ∅: they do not share common
attributes. It is hard to directly compare two visualizations in
this case. Our hope is to use the transitivity of partial orders,
defined based on the above three factors, to rank them.

B. Partial Order

Now we are ready to formally introduce our methodology
to quantify visualizations so as to (partially) rank them, based
on the above factors. Let v be a visualization node.

Factor 1: The matching quality between data and chart M(v).
This is to quantify the “goodness” of this visualization for the
data and visualization type in v. We consider four cases.

(i) Pie Chart. If the aggregation function is AVG, i.e., Y ′ =
AVG(Y), then the pie chart doesn’t make sense as pie charts are
best used when making part-to-whole comparisons, and we set
the value as 0. If there is only one distinct value |d(X)| = 1,
we cannot get much information from the pie chart and thus
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Fig. 5. More sample visualizations for the Flight Delay Statistics table

we set the value as 0. If there are a small number of values,
the pie chart has large significance, and thus we set the value
as 1. If there are many distinct values (e.g., >10) [12], [11],
the significance of the pie chart will decrease, and thus we set
the value as 10

|d(X)| . In addition, if Y values are similar, the pie
chart has not much meaning, and thus we prefer the Y values
have large difference. Based on these factors, we define the
matching quality as below.

M(v) =



|d(X)| = 1

0 or min(Y ′) < 0

or Y ′ = AVG(Y)∑
y∈Y −p(y) log(p(y)) 2 ≤ |d(X)| ≤ 10
10

|d(X)|
∑

y∈Y −p(y) log(p(y)) |d(X)| > 10

(1)

(ii) Bar Chart. The significance of bar chart is similar to
the pie chart and the difference is that bar charts can tolerate
large |d(X)| and has no requirement that Y values have diverse
values. We compute the significance of a bar chart as below.

M(v) =


0 |d(X)| = 1

1 2 ≤ |d(X)| ≤ 20
20

|d(X)| |d(X)| > 20

(2)

(iii) Scatter Chart. We visualize scatter chart only if X,Y
are highly correlated. Thus we can set the value as c(X,Y ).

M(v) = c(X,Y ) (3)

(iv) Line Chart. We visualize line charts if X is temporal or
numerical columns. We want to see the trend of the Y values.
Thus we use the trend distribution to

M(v) = Trend(Y ) (4)

where Trend(Y ) = 1 if Y follows a distribution, e.g.,
linear distribution, power low distribution, log distribution or
exponential distribution; otherwise, Trend(Y ) = 0.

Normalized Significance. Since it is hard to compare the
significance of different charts, we normalize the significance
for each chart. We use the following function to compute the
normalized score.

M(v) =
M(v)

maxM
(5)

where maxM is the maximal score among all the nodes with
the same chart with v.

Factor 2: The quality of transformations Q(v). If the trans-
formed data has similar cardinality with the original data,
then the transformation is bad. Thus we use the ratio of the
cardinality of the transformed data to the cardinality of the

original data to evaluate the quality, i.e., |X
′|

|X| , and the smaller
the better. Thus we compute the value as:

Q(v) = 1− |X
′|

|X| (6)

Factor 3: The importance of columns W(v). We first define
the importance of a column X,W(X), which is the ratio of the
number of valid charts containing column X to the number
of valid charts. Obviously, the more important a column is,
the better to visualize the chart with the column1. Thus we
compute the node weight by summing the weight of all
columns in the node.

W(v) =
∑
X∈v

W(X) (7)

Example 3: For the data in Table 1, we get 44 good visualiza-
tions after visualization recognition. There are 27 valid charts
containing column scheduled, and 12 valid charts contains
column departure delay. So the W(v) of visualization node
Figure 1(c) is 27/44 + 12/44 = 0.89. 2

Given two nodes u, v, if u is better than v on every
factor, i.e., M(u) ≥ M(v), Q(u) ≥ Q(v), W(u) ≥ W(v),
then intuitively, u should be better than v. Based on this
observation, we define a partial order.

Definition 2: [Partial Order] A visualization node u is better
than a node v, denoted by u � v, if M(u) ≥M(v), Q(u) ≥
Q(v), W(u) ≥W(v). Moreover, u is strictly better than v,
denoted by u � v, if any of the above “≥” is “>”. 2

Example 4: Figure 5 shows more visualizations of Flight
Delay. We take 2 visualizations in Figure 1 and 3 in Figure 5 to
illustrate the definition of visualization node, which are shown
in Table II. We only choose the two-dimensional visualizations
in order to simplify the description process. Based on the
visualization node in Table II, we can calculate the M(v),
Q(v) and W(v) and get Figure 6, which shows the score
of three factors that influence partial order of the visualization
nodes. And we can get the partial order of the five visualization
nodes by Figure 6, which is shown in Figure 7. 2

C. Partial Order-Based Visualization Selection

Given a table, we first enumerate all visualizations, and use
the trained binary classifier to decide the “valid” visualizations.
Then for every pair of valid visualizations, we check whether
they satisfy the partial order. If yes, we add a directed

1Note that for line charts and scatter charts, we also need to consider the
correlation between two columns. The larger correlation two columns, the
better the visualization chart is. We have consider this in the first factor.
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Fig M(v) Q(v) W(v)
1(c) 1.00 0.99976 0.89
1(d) 0 0.99633 0.52
5(b) 0.73 0.99995 0.36
5(c) 1.00 0.99995 0.36
5(d) 0.36 0.99998 0.55

Fig. 6. Factors of visualization node

Fig 1(c) 1(d) 5(b) 5(c) 5(d)
1(c) � � none none none
1(d) none � none none none
5(b) none none � none none
5(c) none none � � none
5(d) none � none none �

Fig. 7. Example of partial order

Fig.
1(c)

��

Fig.
5(d)

��

Fig.
5(c)

��

Fig.
1(d)

Fig.
5(b)

Fig. 8. Example of rank visualization

visualization
node

attributes
data features type

Figure 1(c)

X = scheduled
Y = departure delay
X′ = BIN(scheduled) BY HOUR
Y ′ = AVG(departure delay)

|X| = |Y | = 99527
|X′| = |Y ′| = 24
d(X′) = 24
d(Y ′) = 18
c(X′, Y ′) = 0.43

line

Figure 1(d)

X = scheduled
Y = departure delay
X′ = BIN(scheduled) BY DAY
Y ′ = AVG(departure delay)

|X| = |Y | = 99527
|X′| = |Y ′| = 365
d(X′) = d(Y ′) = 365
c(X′, Y ′) = 0.14

line

Figure 5(b)

X = carrier
Y = passengers
X′ = GROUP(carrier)
Y ′ = AVG(passengers)

|X| = |Y | = 99527
|X′| = |Y ′| = 5
d(X′) = d(Y ′) = 5
c(X′, Y ′) = N

bar

Figure 5(c)

X = carrier
Y = passengers
X′ = GROUP(carrier)
Y ′ = SUM(passengers)

|X| = |Y | = 99527
|X′| = |Y ′| = 5
d(X′) = d(Y ′) = 5
c(X′, Y ′) = N

pie

Figure 5(d)

X = departure delay
Y = departure delay
X′ = BIN(departure delay)
Y ′ = CNT(departure delay)

|X| = |Y | = 99527
|X′| = |Y ′| = 2
d(X′) = d(Y ′) = 2
c(X′, Y ′) = N

pie

TABLE II
EXAMPLE OF VISUALIZATION NODE

edge. Thus we get a graph G(V,E), where V is all valid
visualization nodes and E indicates visualization pairs that
satisfy partial orders. The weight between u and v, where
u � v, is defined as:

M(u)−M(v) +Q(u)−Q(v) +W(u)−W(v)

3
(8)

We illustrate by examples about how to rank visualization
nodes based on the graph.

Example 5: According to Figure 7, Figure 1(c) � Figure 1(d),
so there is a directed edge between visualization node 1(c)
and visualization node 1(d). And the weight between them is
((1.00−0)+(0.99976−0.99633)+(0.89−0.52))/3 = 0.4578.
Based on the partial order in Figure 7, we can construct the
graph G using the visualization nodes Figure 1(c), Figure 1(d),
Figure 5(b), Figure 5(c) and Figure 5(d), which is shown in
Figure 8. 2

Efficiently Construct the Graph G. It is expensive to
enumerate every node pair to add the edges. To address this
issue, we propose a quick-sort-based algorithm. Given a node
v, we partition other nodes into three parts: those better than v
(v≺), those worse than v (v�), and others (v 6≺6�). Then for each
node in u ∈ v≺ (or v�), we do not need to compare with nodes
in v� (or v≺). Thus we can prune many unnecessary pairs.
We can also utilize the range-tree-based indexing method to
efficiently construct the graph [3].

Rank Visualization Nodes based on G. A straightforward
method uses topology sorting to get an order of the nodes. It
first selects the node with the least number of in-edges, and
take it as the best node. Then it removes the node and selects

the next node with the least number of in-edges. Iteratively,
we can get an order.

However this method does not consider the weights on
the edges. To address this issue, we propose a weight-aware
approach. We first assign each node with a score S(v).
(1) If node v has no out-edge, S(v) = 0.
(2) S(v) =

∑
(v,u)∈V w(v, u) + S(u), where w(v, u) is the

weight of edge (v, u).
Then we can select the k nodes with the largest scores.

Example 6: We use Figure 8 to illustrate this process. Suppose
we want to get the top-3 visualization nodes in this case.
Figure 8 shows the graph constructed by the visualization
nodes in Figure 7. The out-edges of 5(b) and 1(d) are 0, so
the score of 5(b) and 1(d) are 0.

The weights of edges are: w(1(c), 1(d)) = 0.4578,
w(5(d), 1(d)) = 0.1312, w(5(c), 5(b)) = 0.09.

The scores of the visualization nodes are:
S(1(c)) = w(1(c), 1(d)) +S(1(d)) = 0.4578,
S(5(d))= w(5(d),1(d))+S(1(d)) = 0.1312,
S(5(c)) = w(5(c), 5(b)) +S(5(b)) = 0.09.

The top-3 visualization nodes are 1(c), 5(d), and 5(c). 2

V. OPTIMIZING PARTIAL ORDER-BASED APPROACH

A closer look at the process of visualization enumeration
(i.e., the search space) suggests that some visualizations should
not be considered at all – those visualizations that human
will never generate or consider, even if they have unlimited
budget (or time). In order to directly prune these bad visual-
izations, we define rules to capture “meaningful” operations
(Section V-A). We then present algorithms that utilize these
rules to compute top-k visualizations (Section V-B). We close
this section by discussing how to generate rules (Section V-C).

A. Decision Rules for Meaningful Visualizations

We are ready to present the rules that can (possibly)
generate meaningful visualizations from three perspectives: (1)
transformation rules: whether a grouping or binning operation
is useful; (2) sorting rules: whether a column should be
sorted; and (3) visualization rules: whether a certain type of
visualization is right choice. These rules use the features (or
data representations) discussed in Section III.

1. Transformation Rules. We first consider two columns
X and Y , and the techniques can be easily extended to
support one column or more than 2 columns (omitted due
to space constraints). Without loss of generality, weassume
that X is for x-axis and Y is for y-axis. Next we discuss
how to transform X,Y to X ′, Y ′, by considering the two
transformation operators (GROUP and BIN). We categorize the
rules as follows.
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(I) X is categorial: we can only group X (cannot bin X). After
generating the groups, we can apply aggregation functions
on Y for two cases. (i) If Y is numerical, we can apply an
operation in AGG = {AVG, SUM, CNT}. (ii) If Y is not numerical,
we can only apply CNT. Thus, we have two rules.
• T(X) = Cat,T(Y) = Num → GROUP(X), AGG(Y).
• T(X) = Cat,T(Y) 6= Num → GROUP(X), CNT(Y).

(II) X is numerical: we can only bin X (cannot group
X). After generating the buckets, we can apply aggregation
functions on Y . (i) If Y is numerical, we can apply an
operation in AGG = {AVG, SUM, CNT}. (ii) If Y is not numerical,
we can only apply CNT. Thus we have two rules.
• T(X) = Num,T(Y) = Num → BIN(X), AGG(Y).
• T(X) = Num,T(Y) 6= Num → BIN(X), CNT(Y).

(III) X is temporal: we can either group or bin X . After
generating the groups or buckets, we can apply aggregation
functions on Y . (i) If Y is numerical, we can apply an
operation in AGG = {AVG, SUM, CNT}. (ii) If Y is not numerical,
we can only apply CNT. Thus we have the following rules.
• T(X) = Tem,T(Y) = Num → GROUP/BIN(X), AGG(Y).
• T(X) = Tem,T(Y) 6= Num → GROUP/BIN(X), CNT(Y).

Example 7: Consider Table I. If X = carrier (cate-
gorial) and Y = passengers (numerical), we can apply
GROUP(carrier), AVG(passengers) and get Figure 5(b).
If X = scheduled (temporal) and Y = departure
delay (numerical), we can apply BIN(scheduled),
AVG(departure delay) and get Figure 1(c). 2

2. Sorting Rules. Given two (transformed) columns, we can
sort either X or Y . Intuitively, we sort numerical and temporal
values in X but cannot sort categorical values. Note we can
sort numerical values in Y ; otherwise it does not make sense.
Thus we get the following rules.
• T(X) = Num/Tem → ORDER BY(X).
• T(Y ) = Num → ORDER BY(Y).

Example 8: According to Figure 1(c), we can sort
scheduled (temporal column) and get a trend of average
departure delay, which shows average departure
delay fluctuates over time. It stands at the first relative high
point around 11:00, after which it starts to decline and then
rises again and reaches the peak around 19:00. 2

3. Visualization Rules. For Y , it can be a numerical column
but cannot be other types of columns.
(I) If X is categorical, Y is numerical, we can only draw bar
charts and pie charts.
(II) If X is numerical, Y is numerical, we can draw the line
charts and bar charts. Moreover, if X,Y have correlations, we
can also draw scatter charts.
(III) If X is temporal, Y is numerical, we can only draw line
charts.

Thus we can get the following rules.
• T(X) = Cat,T(Y) = Num → bar/pie.
• T(X) = Num,T(Y) = Num → line/bar.

• T(X) = Num,T(Y) =Num, (X,Y ) correlated→scatter.
• T(X) = Tem,T(Y) = Num → line.

Example 9: Figure 5(b) is a meaningful bar chart, which
consists of categorical column carrier as X and numerical
column passengers as Y . 2

B. Rule-based Visualization Selection

An Enumeration Algorithm. A straightforward algorithm
enumerates every column pairs. (We need to consider both
(X,Y ) and (Y,X).) For each pair (X,Y ), we enumerate every
transformation rule. If the rule can be applied, we transform
the data in the two columns into (X ′, Y ′). Then we enumerate
every sorting rule and transform it into (X ′′, Y ′′). Next, we
try different visualization rules and draw the charts if the rule
can be applied to (X ′′, Y ′′).

Based on these rules, we can get a set of visualization
candidates. Next we use them to construct a graph and select
top-k visualizations from the graph. However, this algorithm is
rather expensive as it requires to first enumerate all candidates
and then identify top-k ones from the graph. Next we propose
optimization techniques.

A Progressive Method. We propose a progressive method to
improve the performance of identifying top-k visualizations.
The basic idea is that we do not generate all the candidate vi-
sualizations. Instead, we progressively generate the candidates
with the largest possibility to be in the top-k results.

Algorithm Overview. For each type of column, categorical,
temporal, numerical, we keep a list of charts w.r.t. the column
type, i.e., Lc, Lt, Lm. We progressively generate the lists.
For each list, we split it into different sublists based on the
columns, we use LX

c to denote the list of charts that take
the categorical column X as x-axis. We can similarly define
Lt, Ln for temporal and numerical columns. Then we build
a tree-like structure. The dummy root has three children Lc,
Lt, Lm. Each node Lc has several children, e.g., LX

c , for
each categorical column X in the table. Next we use the
tournament-like algorithm to select the best chart from leaf
to root. For leaf nodes, we generate the best visualization in
each leaf node w.r.t. the partial order. Then for each node
Lc, we select the best visualization from the visualizations of
its children. Similarly from the root, we can select the best
visualization from its children. If the best chart is selected
from LX

c , we get the next best chart from the list and adjust the
tournament. After we get k charts, the algorithm terminates.

Computing the best chart from LX
c in the leaf node. For each

list LX
c , we can only generate the bar chart and pie chart. We

can get a list of charts based on each factor. Then we get the
best one from these lists.

Computing the best chart from LX
n in the leaf node. For each

list LX
n , we can only generate the line chart and bar chart. We

can get a list of charts based on each factor. Then we get the
best one from these lists.
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Computing the best chart from LX
t in the leaf node. For each

list LX
t , we can only generate the scatter chart. We can get a

list of charts based on each factor. Then we get the best one
from these lists.

Computing the best chart from Lc/Lt/Lm. We just need to
select the best one from its children.

Computing the best chart from the root. We compare differ-
ent charts from its children and select the best one.

Based on the tournament we can generate the top-k charts
without generating all the candidate charts.

Optimizations. We propose several optimization techniques.
First, for each column X , when grouping and binning the

column, we compute the AGG values on other columns together
and avoid binning/grouping the column multiple times.
(1) For each categorical/temporal column, we group the tuples
in D and compute the CNT value; for each numerical column,
we compute the AVG and SUM values in each group. Next we
visualize the data based on the visualization rules.
(2) For each temporal column, we bin the tuples in D,
and compute the CNT value; for each numerical column, we
compute the AVG and SUM values in each bin. Next we visualize
the data based on the visualization rules.
(3) For each numerical column, we bin the tuples in D,
and compute the CNT value; for each numerical column, we
compute the AVG and SUM values in each group. Next we
visualize the the data based on the visualization rules.

Second, we avoid generating the groups of a column if there
are already k charts in Lc better than any chart in this column.

Third, we postpone many operations after selecting the top-
k charts, e.g., sorting, AVG operations. Thus we avoid many
unnecessary operations on the charts that are not in top-k.

C. Rule Generation and Completeness

In this section, we will discuss the “completeness” of rules
introduced in Section V-A, in terms of that they cover all cases
that a visualization can potentially be meaningful (or good).

Transformation Rule Generation and Completeness. For
transformation rule, we only need to consider categorical,
numerical, and temporal columns. For categorical column, we
can only apply group operations on it and apply aggregation on
other columns. For numerical and temporal columns, we can
only apply bin operations on it and apply aggregation on other
columns. We can see that our rules consider all the possible
cases and the transformation rules are complete.

Sorting Rule Generation and Completeness. It is trivial to
generate sorting rules because we can only sort the numerical
and temporal values on x-axis and numerical values on y-axis.
We can see that our rules consider all the possible cases and
the sorting rules are complete.

Visualization Rule Generation and Completeness. We only
need to consider categorical, numerical, and temporal columns.
We can only put the numerical columns on y-axis, and put
categorical, numerical, and temporal columns on x-axis. For

#-tuples #-columns

Max Min Avg Max Min Avg
Temporal/Categorical/Numerical/All

99527 3 3381 2/12/21/25 0/0/1/2 1/2/5/7

TABLE III
STATISTICS OF EXPERIMENTAL DATASETS

No. name #-tuples #-columns #-charts
X1 Hollywood’s Most Prof-

itable Stories
75 8 48

X2 Foreign Visitor Arrivals
By Purpose (2015)

172 4 10

X3 Nutrition Facts for Mc-
Donald’s Menu

263 23 275

X4 Happiness Rank and
Scores by Country
(2015-2016)

316 12 123

X5 ZHVI Summary (By
Country)

1,749 13 36

X6 NFL Offensive Player
Statistics (1999-2013)

4,626 25 209

X7 Airbnb Summary Infor-
mation (Chicago)

6,001 9 42

X8 Top Baby Names in US 22,037 6 17
X9 Adult 32,561 14 103
X10 FlyDelay 99,527 6 44

TABLE IV
10 TESTING DATASETS

No. name from
D1 Happy Countries

Statistics
http://www.kenflerlage.com/2016/08/
whats-happiest-country-in-world.html

D2 US Baby Names https://deepsense.io/us-baby-names-
data-visualization/

D3 Flight Statistics https://www.transtats.bts.gov/airports.
asp?pn=1

D4 TutorialOfUCB https://multimedia.journalism.berkeley.
edu/tutorials/data-visualization-basics/

D5 CPI Statistics https://medium.com/towards-data-
science/data-visualization

D6 Healthcare Statis-
tics

https://getdataseed.com/demo/

D7 Professional
Services Statistics

https://getdataseed.com/demo/

D8 PPI Statistics https://ppi.worldbank.org/visualization/
ppi.html

D9 Average Food Price http://data.stats.gov.cn/english/vchart.
htm

TABLE V
9 REAL USE CASES WITH DATA AND VISULIZATIONS

each case, there are four possible charts. Our rules consider
all the possible cases and the visualization rules are complete.

VI. EXPERIMENTS

The key questions we answered in this evaluation are: (A)
How does DEEPEYE work for real cases? (B) How well does
DEEPEYE perform in visualization recognition? (C) Whether
the visualization selection of DEEPEYE can well capture
human perception? (D) How efficient is DEEPEYE?

Datasets. We have collected 42 real-world datasets from vari-
ous domain such as real estate, social study, and transportation.
Some statistics are given in Table III: the number of tuples
ranges from 3 to 99527, with an average 3381; the number
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Fig. 9. Screenshot for Running DEEPEYE for Dataset D3 Flight Statistics

of columns is from 2 to 25; the statistics of #-columns for
temporal, categorical, numerical is also given.

Ground Truth. We have asked 100 students to label the
dataset. (1) For each dataset, we enumerated all the possible
candidate visualizations and asked the students to label which
are good/bad. (2) For good visualizations, we asked the stu-
dents to compare two visualizations which are better. Then we
merged the results to get a total order [28]. We got 2520/30892
annotated good/bad charts, and 285,236 comparisons for visu-
alization pairs. Note that if a table has k visualizations, there
are k × (k − 1)/2 rankings for one table.

Training. We selected 32 datasets as training datasets and
trained ML models based on the ground truth of 32 datasets.
We tested on other 10 datasets – this can help justify whether
the trained ML models can be generalized. These 10 tables
are given in Table IV, which are selected to cover different
domains, various number of tuples and columns. Note that the
last column, #-charts, refers to good visualizations. We also
conducted cross validation and got similar results.

Experimental Environment. All experiments were conducted
on a MacBook Pro with 8 GB 2133 MHz RAM and 2.9 GHz
Intel Core i5 CPU, running OS X Version 10.12.3.

A. Coverage in Real Use Cases

The most important item on nearly everybody’s wish list is
to see how DEEPEYE works for real use cases. Note that real
use cases are not easy to collect as expected – many websites
that show great visualizations do not provide the corresponding
source data. Furthermore, a visualization that is not present
does not mean it is bad. We found 9 datasets (different from
the above training datasets) with both datasets and widely used
charts, shown in Table V. We used the 32 datasets to train a
model and used the model to generate visualizations.

Figure 9 is a screenshot of the first page (i.e., top-6 results)
of running DEEPEYE on dataset D3. This is the best case since
all 4 visualizations used by the website are automatically dis-
covered by DEEPEYE in the first page. Note that traditionally,
this will take hours for experienced data analysts who know
the data very well to produce; now, you blink and it’s done.

Applying DEEPEYE for other datasets are shown in Ta-
ble VI. Take dataset D1 for instance, Table VI shows that D1

Vis top-k
D1 5 23
D2 5 11
D3 4 6
D4 4 9
D5 1 1
D6 2 3
D7 6 24
D8 9 32
D9 27 27

TABLE VI
VISUALIZATION COVERAGE

 1

#       #B     #SVM      
#DT

Bayes SVM Decision Tree

Precision 72.20 81.10 95.40

Recall 71.30 81.10 95.40

F-measure 71.50 80.90 95.40

Pe
rfo

rm
an

ce
(%

)

0

25

50

75

100

Precision Recall F-measure
95.4095.4095.40

80.9081.1081.10

71.5071.3072.20

Bayes SVM Decision Tree

�1

Fig. 10. Average effectiveness for ML models

Precision Recall F-measure
Bayes SVM DT Bayes SVM DT Bayes SVM DT

B 84.30 86.90 93.20 84.10 86.40 93.00 84.20 86.65 93.10
L 93.20 96.50 99.50 90.80 96.40 99.50 91.98 96.45 99.50
P 83.40 90.60 94.70 82.60 90.60 94.70 83.00 90.60 94.70
S 84.30 86.90 93.10 84.10 86.40 92.90 84.20 86.65 93.00

TABLE VII
AVERAGE EFFECTIVENESS (%): B(BAR), L(LINE), P(PIE), S(SCATTER)

Bar Line Pie Scatter
Bayes SVM DT Bayes SVM DT Bayes SVM DT Bayes SVM DT

X1 79 81 93 81 83 93 82 86 95 83 83 95
X2 82 91 98 85 90 99 84 90 98 83 90 98
X3 71 80 95 84 92 94 82 84 94 81 82 95
X4 72 82 94 84 91 93 82 87 95 82 84 95
X5 73 83 94 86 89 96 83 86 95 82 83 94
X6 73 80 95 86 87 95 84 84 94 82 83 96
X7 71 83 96 87 90 95 83 85 94 81 82 95
X8 70 81 95 89 86 96 82 84 95 81 83 94
X9 72 82 94 90 88 93 82 84 95 82 82 96
X10 71 81 97 81 86 97 83 83 96 83 84 96

TABLE VIII
F-MEASURE (%) FOR DIFFERENT TYPES OF CHARTS

has 5 practically used visualizations, which can be covered by
top-23 results from DEEPEYE, similarly for the other cases.

We have two main research findings from this group of
experiment. (1) DEEPEYE can automatically discover visual-
izations needed in practice to tell compelling stories, which
makes creating good visualizations a truly sexy task. (2)
Sometimes the k visualizations needed to cover real cases is
much larger than the #-real ones, e.g., it needs top-23 results
to cover the 5 real cases. This is not bad at all since (i) users
just browse few pages to find the ones they need; (ii) the other
results not used by the real cases are not necessarily bad ones,
for many cases the users may like them if they have seen them.

B. Visualization Recognition

Our main purpose in this group of experiment is to test (1)
whether binary classifiers can well capture human perception
for visualization recognition; and (2) which ML model best
fits our studied problem?

We tested three popular ML models – Bayes, SVM and
decision tree (DT). We used three metrics, precision, recall and
F-measure (i.e., the harmonic mean of precision and recall).

Figure 10 shows the average precision, recall and F-measure
values for the 10 datasets (X1–X10). This figure clearly shows
that decision tree is way better than SVM and Bayes as binary
classifiers for visualization recognition and achieves averagely
95% F-measure – this justifies decision tree as a good choice
for visualization recognition problem. The main reason is
possibly because the visualization recognition should follow
the rules as discussed in Section V-A and decision tree could
capture these rules well.

Table VII breaks down Figure 10 for showing the effec-
tiveness for bar (B), line (L), pie (P), and scatter (S) charts,
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(a) NDCG for 10 datasets
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(b) Bar charts
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(c) Line charts
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(d) Pie charts
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(e) Scatter charts
Fig. 11. Effectiveness study for visualization ranking & selection
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Fig. 12. Efficiency

which is the average of the 10 tested datasets. It shows the
consistent story that decision tree outperforms SVM and Bayes
behaves the worst. Table VIII further verifies the above results
by showing individual cases for these 10 datasets, which also
confirms that decision tree works best in each dataset (see our
technical report [10] for details).

C. Visualization Selection

As visualization ranking serves the problem of visualization
selection, we only report the result for visualization selection.

We used the normalized discounted cumulative gain
(NDCG) [20] as the measure of ranking quality, which cal-
culates the gain of a result based on its position in the result
list and normalizes the score to [0, 1] where 1 means perfect
top-k results. We compared the NDCG values of partial order-
based method and learning to rank for datasets X1–X10.

Figure 11(a) reports the results. It shows clearly that partial
order is always better than learning to rank. The maximal
NDCG of partial order is 0.97, and minimal NDCG of partial
order is 0.81, while the maximal and minimal NDCG of learn-
ing to rank are 0.85 and 0.52, respectively. This is because the
partial order ranked the order based on expert rules which
captures the ranking features very well and learning to rank
cannot learn these rules.

Figures 11(b), 11(c), 11(d) and 11(e) classify Figure 11(a)
into bar, line, pie and scatter charts, respectively. Not surpris-
edly, they behave differently for various datasets. However, the
general observation is that the partial order based approach
beats learning to rank for visualization selection.

D. Efficiency – Tell the stories of your data in seconds!

We have also tested the efficiency of DEEPEYE on datasets
X1–X10. Each dataset is associated with 4 bars that mea-
sure the end-to-end running time from a given dataset to
visualization selection. The time of each bar consists of two
parts: (i) generate all candidate visualization without/with (i.e.,

E/R) using our transformation/sorting/visulization rules; and
(ii) visualization selection using learning to rank/partial order-
based solutions. We annotate the percentage (%) of these two
parts in each bar, e.g., the first bar means that it needs 550 ms
to finish, where visualization enumeration (E) takes 20% time
and visualization selection using learning to rank (L) takes
80% time.

Figure 12 tells us the followings: (1) using the rules
(Section V-A) can effectively reduce the running time, i.e.,
RL (resp. RP) runs always faster than EL (resp. EP) since it
avoids generating many bad visualizations, as expected; (2)
partial order-based approach runs faster than learning to rank
model, i.e., EP (resp. RP) runs always faster than EL (resp.
RL), because partial order can efficiently prune the bad ones
while learning to rank must evaluate every visualizations; (3)
DEEPEYE can run to complete in seconds for datasets with
reasonable size. Note that the performance will be boosted by
DBMSs (e.g., the database-based optimizations in SeeDB [21]
and DeVIL [27]) or MapReduce-like platforms such as Spark
and Flink since the task of visualization selection is trivially
parallelizable, which will be our near future work.

VII. RELATED WORK

Visualization Recommendation. There has been other work
on recommending visualizations, such as SeeDB [22], [21],
Profiler [8], Rank-by-feature framework [17], Voyager [25],
VizDeck [13], and Behavior-driven visualization recommen-
dation [6]. SeeDB [22], [21] quantifies an “interesting” vi-
sualization as the one that is largely deviated from a user
given reference, which is similar to find an outlier. Pro-
filer [8] is similar to SeeDB, which looks for anomalies as
candidate recommendations. Rank-by-feature framework [17]
makes recommendations based on selected statistical metrics
including distribution and correlation of data. Voyager [25]
suggests visualizations according statistical properties of all
visualizations. VizDeck [13] can depict all possible 1D and
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2D visualizations ranked by statistical metrics and a voting
mechanism in which users can vote for visualizations to adjust
the order of visualizations.

Different from them that mainly use statistical properties
(e.g., outliers) for computing recommendations, DEEPEYE
tries to capture the human perception by understanding ex-
isting examples using mature ML-based techniques, for both
visualization recognition and visualization ranking. Also, our
partial orders encode expert knowledge, which comes from,
but goes beyond, statistics of data.

Interactive Data Visualization Systems. Ermac [26] com-
piles a Logical Visualization Plan (LVP) to a Physical Visual-
ization Plan (PVP), where PVP can leverage optimizations of
DBMSs. DeVIL [27] extends Ermac by a SQL-like language
to support interactive visualization. zenvisage [18], [19] tries
to find other interesting data when the users provide their
desired trends, patterns, or insights. Lyra [16] is an interactive
environment that enables custom visualization design without
writing any code. [6] interacts with users by learning search
behavior to suggest visualizations.

DEEPEYE is orthogonal to user interaction – DEEPEYE
plans to export a user specified visualization to all popular
interactive visualization systems for further manipulation.

Data Visualization Languages. There have been several work
on defining languages for data visualization. ggplot [24] is
a programming interface for data visualization. The Logical
Visualization Plan (LVP) in [26] is a nested list of clauses.
DeVIL [27] uses a SQL-like language. ZQL [18], [19] is
similar to the concept Query-by-Example (QBE) that has
a tabular structure. Vega (https://vega.github.io/vega/) is a
visualization grammar in a JSON format. VizQL [7], used by
Tableau, is a visual query language that translates drag-and-
drop actions into data queries and then expresses data visually.

Our proposed language is a subset, but shares many features
with the others. Our purpose to define a simple language is
just to make our discussion easier. Our language can in fact
be easily rewritten by other languages.
Performance Optimization. The work [9] uses sampling
based methods for visualizations with ordering guarantees.
Tableau [23] borrows ideas from column-stores to its data
engine for optimizing its performance.

The optimizations we propose in this paper are mainly
for improving partial order computation. Many of existing
optimization techniques can be leverages to further improve
the performance of DEEPEYE.

VIII. CONCLUSION

We have presented DEEPEYE, a novel automatic data
visualization system. We have proposed different methods,
leveraging machine learning techniques as black-boxes and ex-
pert specified rules, to solve three challenging problems faced
by DEEPEYE, namely, visualization recognition, visualization
ranking, and visualization selection. We have shown promising
results using real-world data and use cases.
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