
Big RDF Data Cleaning
Nan Tang

Qatar Computing Research Institute
Doha, Qatar

ntang@qf.org.qa

Abstract—Without a shadow of a doubt, data cleaning has
played an important part in the history of data management
and data analytics. Possessing high quality data has been proven
to be crucial for businesses to do data driven decision making,
especially within the information age and the era of big data.
Resource Description Framework (RDF) is a standard model
for data interchange on the semantic web. However, it is known
that RDF data is dirty, since many of them are automatically
extracted from the web. In this paper, we will first revisit data
quality problems appeared in RDF data. Although many efforts
have been put to clean RDF data, unfortunately, most of them are
based on laborious manual evaluation. We will also describe pos-
sible solutions that shed lights on (semi-)automatically cleaning
(big) RDF data.

I. INTRODUCTION

The process of cleaning data is known to be hard, not only
because of the dirtiness of real-life data – up to 30% of an
organization’s data could be dirty [2], but also because it is
very expensive – it costs the US economy $3 trillion+ per
year [1]. Despite the rich theoretical and practical contributions
in all aspects of data cleaning [7], the journey of data cleaning
is deemed to be extraordinary and to live long for many
reasons: the burst of data in volume, the emergence of data
formats such as RDF data, the varieties of errors in data, the
x-factor of user involvement and above all, the pursuit of high
quality data for all businesses.

Although RDF is a popular and important data format [11],
[15], so far, however, there has been little discussion about
how to automatically clean RDF data. RDF is normally
dirty since most of them are automatically extracted from
known sources, e.g., YAGO [13] (Yet Another Great Ontology)
extracts Wikipedia and other sources, NELL (Never-Ending
Language Learner) [4] reads the web. It is reported [19] that
YAGO has a good precision at 95%, since YAGO is based on
a clean logical model with a decidable consistency. However,
the estimated precision of NELL is only 74% [4], since NELL
is more ambitious in that it tries to reads and learns the whole
web, where the data itself being read could be wrong.

Despite the importance of high quality RDF data, clean-
ing RDF data is a hard problem, and reports from both
academia [13] and industry [6] state that most of RDF cleaning
tasks were done by laborious manual evaluation.

On the other hand, even if the RDF data at hand is
considered to be correct, problems still remain when trying
to use them effectively. One main issue is about aligning
instances and relations in the same ontology, or across different
ontologies. The former happens because that in general, a large

ontology is contributed by different persons who will design
various definitions for instances and relations, or is extracted
and learned from different sources. The latter is more natural
since they come from heterogeneous sources. Although work
has been done to align instances and relations [16], [18], it
remains and will last long to be a challenging topic.
Organization. The rest of the paper is organized as follows.

1) We will revisit data quality problems about RDF data
management in Section II.

2) We identify some promising directions of cleaning RDF
data in Section III.

II. RDF DATA QUALITY PROBLEM REVISITED

Before discussing promising solutions, let us first identify
data quality problems in RDF data management and their
effect in emerging applications.

(1) Typos. Typos (a.k.a. misspellings) are normally introduced
by humans. However, they can also by automatically intro-
duced during inaccurate information extraction or segmen-
tation. They are long-standing data cleaning problems for
decades. Since RDF data is normally crafted from existing
relational tables, or extracted from the web, this data quality
issue about typos naturally carries over to RDF data.

Some tools for checking RDF typos have been developed1,
given some RDF triples and the website where these triples
came from.

(2) Instance normalization/transformation. Often times, the
same instance will be presented by different syntactic forms
in an RDF source. As mentioned about the trouble with
DBpedia2, if you were trying to search U.S., you may end
up with finding many objects such as “United States”@en,
http://dbpedia.org/resource/United States, or “US”@en.

In industry, ETL (extract, transform, load) rules are
widely used for data normalization/transformation. They
typically use dictionary lookup to transform data. For
example, they can normalize all “United States”@en,
http://dbpedia.org/resource/United States, or “US”@en to
“USA”. Maintaining an accurate dictionary for the dynamic
data on the web is a costly job.

(3) Missing types or literal values. Missing types are types of
certain literal values that are absent. Missing literal values are
values of certain properties that are missing, although they are

1http://graphite.ecs.soton.ac.uk/checker/
2http://blog.databaseanimals.com/the-trouble-with-dbpedia

needed, such as the literal values about state of a country are
desired but are missing. Both are very important in answering
user queries to identify correct results.

(4) Heterogeneous ontologies. In the literature, knowledge
bases in RDF format have been widely used to understand
web table semantics [22]. However, one main problem raised
is about the ambiguity coming from the growing number of
independently designed ontologies. For example, Italy could
be the type economy, country, or even a club. Such heteroge-
neous ontologies will hinder the users to effectively understand
and reason RDF data.

There has been some work to align heterogeneous ontolo-
gies [16], [18]. However, with the growing number of hetero-
geneous ontologies, aligning them will remain a challenging
problem for a long term.

(5) Outdated values. Many values are frequently changed, e.g.,
position, salary or age. When extracting values from the web,
many information might have been outdated such as the age
of Barack Obama.

When multiple instances of the same entity are given,
algorithms using currency constraints [8] are already in place.
Applying such techniques in RDF data needs a further inves-
tigation.

(6) Violations of integrity constraints. Dependency (a.k.a. in-
tegrity constraints) based theory provides a strong foundation
to validate RDF data. For example, cardinality constraints will
limit the number of occurrences of a certain type e.g., spouse.
Data that violates a certain constraint is considered to be
incorrect. However, as observed in [10], standard database-
style cardinality constraints cannot be modelled in neither
RDFS nor OWL. Hence, how to carry over the rich study of
constraint based data cleaning in relational database to RDF
data deserves a full treatment (see [20] for a survey).

III. SOME POSSIBLE DIRECTIONS

Having recognized the problems mentioned in Section II,
there are some promising steps that researchers have taken
or could take towards addressing some aspects of the above
problems.

(1) Constraints based RDF cleaning. Identify functional de-
pendency violations and compute repairs on RDF data have
been studied in [10]. In general, constraint based repairing is
the data cleaning problem introduced in [3]: repairing is to find
another database that is consistent and minimally differs from
the original database. They compute a consistent database by
using different cost functions for value updates and various
heuristics to guide data repairing.

Constraints expressed by RDFS and OWL are different
from integrity constraints studied in relational data. The first
challenge is how to modify existing profiling algorithm [12]
for discovering constraints over RDF data. The following issue
is how to design effective algorithms to compute a consistent
RDF data with the minimum cost.

(2) Master data. Master data (a.k.a. reference data) is a single
repository of high-quality data that provides various applica-

tions with a synchronized, consistent view of its core business
entities. An enterprise nowadays typically maintains master
data. Master data management systems are being developed
by IBM, SAP, Microsoft and Oracle. In fact, master data has
been used to clean relational data using editing rules [9], fixing
rules [21] or Sherlock rules [14]. New matching rules across
RDF data and relational master data (or trusted knowledge
bases) need to be defined, such that similar techniques can be
applied to clean RDF data.

(3) Interactive RDF Cleaning. It is known that heuristic based
data cleaning solutions might introduce data errors [9]. In or-
der to ensure that a repair is reliable, users have been involved
as first-class citizens in the process of data repairing [9], [17].
How to leave experts in the loop of RDF cleaning is an
interesting topic.

Since many RDF data is extracted from the web, experts
may not have enough capacity to clean them. Recently, crowd-
sourcing has been proven to be a viable and cost-effective
alternative solution than data experts. Effectively involving the
crowd requires dealing with traditional crowdsourcing issues
such as forming easy-to-answer questions for the new data
cleaning tasks and optimizing the order of issuing questions
to reduce monetary cost.

(4) Big RDF data cleaning. In order to deal with big RDF
data, a natural idea is to leverage existing database engines or
distributed systems.

Let us explain how our commodity data cleaning system
NADEEF [5] works for big RDF data cleaning. NADEEF is an
extensible, generic and easy-to-deploy date cleaning system
that provides simple programming APIs, which isolates users
from the low level optimizations to achieve efficiency and
scalability.

Consider an RDF dataset containing students, professors,
and universities, where each student is enrolled in one uni-
versity and has one professor as advisor. The top-left side of
Fig. 1 shows this RDF dataset as set of triples (RDF input) and
Fig. 2 shows the graph representation of such an RDF dataset.
Let us assume that there cannot exist two graduate students
in two different universities and have the same professor as
advisor. According to this rule, there are two violations in this
RDF dataset: (Paul, John) and (Paul, Sally).

Figure 1 depicts how NADEEF works to clean this RDF
dataset. It starts with the Scope operator where it removes
unwanted RDF predicates on attributes Subject and Object
and passes only those triples with advised by and study in
predicates to the next operator. After that, we apply the first
Block to group triples based on student name (i.e., Paul)
followed by Iterate operator to join the triples in each group.
The output of this Iterate is passed to the second Block and
Iterate operators to group incoming triples based on advisor
name (i.e., William). The Detect operator generates violations
based on incoming triples with different university names.
Finally, the Fix operator suggests fixing the university names
in incoming violations.

In fact, NADEEF has different back-ends to support real

(3) Iterate

Predicate Object

student_in Yale

student_in UCLA

student_in UCLA

advised_by WIlliam

Subject

Paul

John

Sally

Paul

John advised_by WIlliam

Sally advised_by WIlliam

professor_inWIlliam UCLA

RDF input

Object

Yale

UCLA

UCLA

WIlliam

Subject

Paul

John

Sally

Paul

John WIlliam

Sally WIlliam

(1) Scope (student_in,
advised_by)

Object1 Object2

William Yale

WIlliam UCLA

William UCLA

Subject

Paul

John

Sally

(4) Block (Object1)

Object1 Object2

William Yale

WIlliam UCLA

William UCLA

Subject

Paul

John

Sally
B1

(5) Iterate

(Paul, John)
(Paul, Sally)
(John, Sally)

(6) Detect

(Paul, John)
(Paul, Sally)

(7) Fix
Paul.Yale = John.UCLA
Paul.Yale = Sally..UCLA

B2

Object

Yale

UCLA

UCLA

WIlliam

Subject

Paul

John

Sally

Paul

John WIlliam

Sally WIlliam

(2) Block (Subject)

B1

B3

Figure 1. Logical operators execution for the RDF rule example.

UCLA

student_in

Sally

William

professor_in

advised_by

Paul

ad
vis
ed
_b
y

Yale

student_in

John

advised_by
student_in

Figure 2. Example of an RDF graph.

execution of the above workflow, ranging from databases such
as and PostgreSQL to distributed systems such as Spark.

IV. CONCLUSION

This article developed a proposal that
1) Revisits data quality issues in RDF data management.
2) Proposes possible solutions to address data quality prob-

lem in (big) RDF data.

REFERENCES

[1] Dirty data costs the U.S. economy $3 trillion+ per year.
http://www.ringlead.com/dirty-data-costs-economy-3-trillion/.

[2] Firms full of dirty data. http://www.itpro.co.uk/ 609057/firms-full-of-
dirty-data.

[3] M. Arenas, L. E. Bertossi, and J. Chomicki. Consistent query answers in
inconsistent databases. In Proceedings of the Eighteenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, May
31 - June 2, 1999, Philadelphia, Pennsylvania, USA, pages 68–79, 1999.

[4] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. H. Jr., and T. M.
Mitchell. Toward an architecture for never-ending language learning.
In Proceedings of the Twenty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010, 2010.

[5] M. Dallachiesa, A. Ebaid, A. Eldawy, A. K. Elmagarmid, I. F. Ilyas,
M. Ouzzani, and N. Tang. NADEEF: a commodity data cleaning
system. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2013, New York, NY, USA, June
22-27, 2013, pages 541–552, 2013.

[6] O. Deshpande, D. S. Lamba, M. Tourn, S. Das, S. Subramaniam,
A. Rajaraman, V. Harinarayan, and A. Doan. Building, maintaining, and
using knowledge bases: a report from the trenches. In Proceedings of
the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2013, New York, NY, USA, June 22-27, 2013, pages 1209–
1220, 2013.

[7] W. Fan and F. Geerts. Foundations of Data Quality Management. Syn-
thesis Lectures on Data Management. Morgan & Claypool Publishers,
2012.

[8] W. Fan, F. Geerts, N. Tang, and W. Yu. Inferring data currency
and consistency for conflict resolution. In 29th IEEE International
Conference on Data Engineering, ICDE 2013, Brisbane, Australia, April
8-12, 2013, pages 470–481, 2013.

[9] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Towards certain fixes with
editing rules and master data. VLDB J., 21(2):213–238, 2012.

[10] C. Fürber and M. Hepp. Using semantic web resources for data
quality management. In Knowledge Engineering and Management by the
Masses - 17th International Conference, EKAW 2010, Lisbon, Portugal,
October 11-15, 2010. Proceedings, pages 211–225, 2010.

[11] F. Goasdou, Z. Kaoudi, I. Manolescu, J.-A. Quian-Ruiz, and S. Zam-
petakis. Cliquesquare: Flat plans for massively parallel rdf queries. In
IEEE 31th International Conference on Data Engineering, Seoul, ICDE
2015, Korea, April 13 - April 17, 2015, 2015.

[12] A. Heise, J. Quiané-Ruiz, Z. Abedjan, A. Jentzsch, and F. Naumann.
Scalable discovery of unique column combinations. PVLDB, 7(4):301–
312, 2013.

[13] J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum. YAGO2:
A spatially and temporally enhanced knowledge base from wikipedia.
Artif. Intell., 194:28–61, 2013.

[14] M. Interlandi and N. Tang. Proof positive and negative in data cleaning.
In IEEE 31th International Conference on Data Engineering, Seoul,
ICDE 2015, Korea, April 13 - April 17, 2015, 2015.

[15] Z. Kaoudi and I. Manolescu. Rdf in the clouds: A survey. VLDB J.,
2015.

[16] S. Lacoste-Julien, K. Palla, A. Davies, G. Kasneci, T. Graepel, and
Z. Ghahramani. Sigma: simple greedy matching for aligning large
knowledge bases. In The 19th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD 2013, Chicago, IL,
USA, August 11-14, 2013, pages 572–580, 2013.

[17] V. Raman and J. M. Hellerstein. Potter’s wheel: An interactive data
cleaning system. In VLDB 2001, Proceedings of 27th International
Conference on Very Large Data Bases, September 11-14, 2001, Roma,
Italy, pages 381–390, 2001.

[18] F. M. Suchanek, S. Abiteboul, and P. Senellart. PARIS: probabilistic
alignment of relations, instances, and schema. PVLDB, 5(3):157–168,
2011.

[19] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic
knowledge. In Proceedings of the 16th International Conference on
World Wide Web, WWW 2007, Banff, Alberta, Canada, May 8-12, 2007,
pages 697–706, 2007.

[20] N. Tang. Big data cleaning. In Web Technologies and Applications
- 16th Asia-Pacific Web Conference, APWeb 2014, Changsha, China,
September 5-7, 2014. Proceedings, pages 13–24, 2014.

[21] J. Wang and N. Tang. Towards dependable data repairing with fixing
rules. In International Conference on Management of Data, SIGMOD
2014, Snowbird, UT, USA, June 22-27, 2014, pages 457–468, 2014.

[22] J. Wang, H. Wang, Z. Wang, and K. Q. Zhu. Understanding tables on
the web. In Conceptual Modeling - 31st International Conference ER
2012, Florence, Italy, October 15-18, 2012. Proceedings, pages 141–
155, 2012.

