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Abstract—Entity categorization – the process of grouping
entities into categories for some specific purpose – is an important
problem with a great many applications, such as Google Scholar
and Amazon products. Unfortunately, in practice, many entities
are mis-categorized. In this paper, we study the problem of
discovering mis-categorized entities from a given group of entities.
This problem is inherently hard: all entities within the same
group have been “well” categorized by state-of-the-art solutions.
Apparently, it is nontrivial to differentiate them. We propose
a novel rule-based framework to solve this problem. It first uses
positive rules to compute disjoint partitions of entities, where the
partition with the largest size is taken as the correctly categorized
partition, namely the pivot partition. It then uses negative rules
to identify mis-categorized entities in other partitions that are
dissimilar to the entities in the pivot partition. We describe
optimizations on applying these rules, and discuss how to
generate positive/negative rules. Extensive experimental results
on two real-world datasets show the effectiveness of our solution.

I. INTRODUCTION

Categorizing entities into sensible groups is a fundamental
mode for many applications. Nevertheless, mis-categorized
entities are pervasive, e.g., there exist others’ publications in
many researchers’ Google Scholar pages, and many Amazon
products are wrongly categorized. A practical yet interesting
problem is: how to discover mis-categorized entities?

Example 1: [Mis-Categorized Google Scholar Entities.] Con-
sider Nan Tang’s sample Google Scholar entities (i.e., publi-
cations) in Figure 1. Each entity has three attributes: Title,
Authors and Venue. Two entities, e4 and e6, are mis-
categorized – they do not belong to the Nan Tang at QCRI. The
e4rAuthorss does not contain a valid name, and the Nan Tang
in e6rAuthorss is a different person working in chemistry.

[Mis-Categorized Amazon Product Entities.] Consider sample
entities in Amazon’s product category “Router”, shown in
Figure 2. Each entity has four attributes: Asin is the ID of
product, Title is its name, Also viewed contains a list of
products viewed together with it, and Description describes
its features. The entity o3 is mis-categorized, since it should
be in category “Adapter” instead of “Router”. l

Entity categorization (EC) is related to, but different from,
entity matching (EM) that has been well tamed by database
researchers. EM is to determine if two entities are the same,
which is often solved by comparing aligned attributes symbol-
ically (or syntactically). Entity categorization groups entities
more conceptually (or semantically), e.g., e1 and e2 in Figure 1
are not symbolically similar in either Title, Authors, or
Venue. Hence, traditional EM solutions do not shine for EC.

Title: Win: an efficient data placement strategy for parallel xml databases
Authors: Nan Tang, Guoren Wang, Jeffrey Xu Yu
Venue: ICPADS 2005

Title: KATARA: A data cleaning system powered by knowledge bases and crowdsourcing
Authors: Xu Chu, John Morcos, Ihab F. Ilyas, Mourad Ouzzani, Paolo Papotti, Nan Tang
Venue: SIGMOD 2015

Title: NADEEF: A generalized data cleaning system
Authors: Amr Ebaid, Ahmed Elmagarmid, Ihab F. Ilyas, Nan Tang
Venue: VLDB 2013

Title: Hierarchical indexing approach to support xpath queries
Authors: Nan Tang, Jeffrey Xu Yu, M. Tamer Özsu, Kam-Fai Wong
Venue: ICDE 2008

Title: Discriminative bi-term topic model for social news clustering
Authors: Yunqing Xia, NJ Tang, Amir Hussain, Erik Cambria
Venue: SIGIR 2005

Title: Extractive and oxidative desulfurization of model oil in polyethylene glycol
Authors: Jianlong Wang, Rijie Zhao, Baixin Han, Nan Tang, Kaixi Li
Venue: RSC Advances 1905

e1:

e2:

e3:

e4:

e5:

e6:

Fig. 1. Sample Google Scholar Entities of Nan Tang

Asin: B000BTL0OA
Title: Linksys WRT54GL Wi-Fi Wireless-G Broadband Router
Also-viewed: "B00004SYNW", "B00004SYLI", "B00004SB92", “B00006I5XC"
Description: Shares a single Internet connection with 4 Ethernet wired

Asin: B00004SYLI
Title: Netgear RT311 DSL/Cable Internet Gateway Router
Also-viewed: "B000BTL0OA", "B00004SYNW", "B00004SB92", “B00006I5XC"
Description: Ethernet router allows 32 users to share a single Internet connection

Asin: B00004SYNW
Title: D-Link DI-701 Ishare Cable/DSL Internet Sharing Router
Also-viewed: "B000BTL0OA", "B00004SYLI", "B00004SB92", “B00006I5XC"
Description: Provides 32-user Internet access and file sharing

Asin: B00004TF4X
Title: StarTech.com USB to Ethernet LAN Adapter 
Also-viewed: "B00007LTB6", "B0001PFO3C", "B00007KDVK", “B000063XJ7"
Description: Compatible with Gigabit Ethernet networks and powered via USB

o1:

o2:

o3:

o4:

Fig. 2. Sample Entities in Amazon’s Router Category

In fact, discovering mis-categorized entities is hard – all
entities that are categorized into the same group already use
all attributes of the entities, how can we use the same set of at-
tributes to discover mis-categorized entities? Intuitively, since
entities are categorized more conceptually than symbolically,
we need to capture semantic similarity between entities, which
is beyond traditional symbolic reasoning widely used in EM.

We propose a rule-based framework DIME using positive
and negative rules to discover mis-categorized entities. Positive
rules are used conservatively to find disjoint partitions, such
that the entities within the same partition should be categorized
together. The partition with the largest size is called the
pivot partition, under the practical assumption that the largest
partition for one category should be correct. Negative rules
are used to compare other partitions with the pivot partition
to discover dissimilar entities as mis-categorized entities.

Example 2: Consider the entities in Figure 1 about Google
Scholar, and the following positive rules (ϕ`) and negative
rules (φ´). We use the terms “similar”/“dissimilar” to indicate



that two entities should/shouldn’t be in the same category.
ϕ`1 : Two entities are similar, if they have ě 2 common

authors in Authors.
ϕ`2 : Two entities are similar, if they have overlapping in

Authors and their Venue are in the same field.
φ´1 : Two entities are dissimilar, if they do not have

overlapping Authors.
φ´2 : Two entities are dissimilar, if they have ď 1 common

author in Authors and their Venue are in different fields.

(1) Positive rules are used in a disjunctive fashion as ϕ`1 _ϕ
`
2 :

two entities belong to the same category if either ϕ`1 or ϕ`2 is
true. Also, we assume the transitivity of categorization: entities
(ei, ej) and (ej , ek) are categorized together implies that (ei,
ek) are also categorized together. We can find three partitions
P1 : te1, e2, e3, e5u, P2 : te4u, P3 : te6u. For instance, e1

and e2 are categorized together based on ϕ`2 : they have an
overlapping author Nan Tang, and their venues SIGMOD in e1

and ICDE in e2 are in the same field (ontology-based similarity
will be discussed in Section II). The other entities in P1 are
categorized together similarly.
(2) The partition P1 is considered as the pivot partition,
because it has the largest size.
(3) Negative rules are used either individually e.g., φ´1 , or in
a disjunction e.g., φ´1 _ φ´2 : two entities belong to different
categories if either φ´1 or φ´2 is true. φ´1 discovers e4 as one
mis-categorized entity because e4 does not have overlapping
in Authors with any entity in P1. φ´1 _ φ

´
2 further discovers

e6, since e6 only has one common author with the entities in
P1 and its Venue is in the field of Chemical Sciences, which
is different from the field Computer Science in P1. Negative
rules are used in sequence – we first use φ´1 , then φ´1 _ φ

´
2 ,

and so on, if more negative rules are available. We provide a
scrollbar for the user to confirm the mis-categorized entities
from either φ´1 or φ´1 _ φ

´
2 , shown in Figure 3. l

(a) Author (b) Author and Venue

Title: Discriminative Bi-Term Topic Model for Social News Clustering 
Authors: Yunqing Xia, NJ Tang, Amir Hussain, Erik Cambria 
Venue: SIGIR 2005

Title: Discriminative Bi-Term Topic Model for Social News Clustering 
Authors: Yunqing Xia, NJ Tang, Amir Hussain, Erik Cambria 
Venue: SIGIR 2005

Title: Extractive and Oxidative Desulfurization of Model Oil in 
Polyethylene Glycol 
Authors: Jianlong Wang, Rijie Zhao, Baixin Han, Nan Tang, Kaixi Li 
Venue: RSC Advances 1905

Fig. 3. Tuning Discovered Mis-categorized Entities Using a Scrollbar

We can see from Example 2 that: (i) Positive rules need to
be conservative, so as not to include mis-categorized entities
in the pivot partition; (ii) We apply multiple negative rules
based on the “one does not fit all” philosophy – no single
negative rule can perfectly discover mis-categorized entities
for every given group; and (iii) The purpose to apply a
sequence of negative rules, which ensures that their outputs are
in a monotonic fashion, is easy for users to scroll manually. In
practice, it is way cheaper for users to confirm our suggested
mis-categorized entities than selecting them manually from
the entire group. For example, Guoliang Li has 178 Google
Scholar entires, where 6 are mis-categorized. We will discover
5 to 10 with different negative rules, which saves Guoliang
from checking 178 entries to find these 6 wrong entries.
Contributions. We make the following notable contributions.

(1) We define the new problem of discovering mis-categorized
entities (Section II).
(2) We present the solution overview of a novel rule-based
framework to tackle the studied problem (Section III).
(3) We devise signature-based algorithms, in order to im-
prove the performance of applying positive/negative rules
(Section IV).
(4) We describe effective algorithms to generate positive and
negative rules from examples (Section V).
(5) We ran extensive experiments on real-world datasets
to show that our framework can efficiently discover mis-
categorized entities with high accuracy (Section VI).
Related Work. We classify related work as follows.
Entity Matching (EM) aims to find pairs of entities that refer
to the same real-world object. EM rules have been widely
used in database community [7], [25] to address the EM
problem. There are also approaches to determine the best
similarity functions and thresholds of a given declarative
(DNF) EM rule [24]. Generic entity matching that provides
abstract functions to the users is proposed [1]. Optimizing
EM performance has been studied as well [5], [15]. Moreover,
there are machine learning based EM methods [3], [8], [21],
and crowdsourcing powered EM solutions [11], [22]. Also,
collective entity resolution [2] uses additional information to
match entities by an agglomerative clustering algorithm.

As mentioned earlier, entity categorization (EC) differs from
EM in that entities within the same category typically refer
to different real-world objects. Consequently, the traditional
wisdom of inferring whether entities are the same cannot be
directly applied to our studied problem.
Named Entity Disambiguation (NED) is the task of disam-
biguating named entities mentioned in text of data and link
them to their corresponding entries [4], [16], [18], [19]. NED
requires more efforts from natural language processing to
handle unstructured data.

NED aims to distinguish entities that have the same name
but refer to different real-world entities. In addition to disam-
biguation, our work also identifies entities that have different
names (or references) but should be in the same category, by
using multiple attributes in a more semantic way.
Clustering Algorithms. Another related topic is clustering,
where thousands of clustering algorithms have been published
in the last 50` years [13]. Perhaps the most widely used is the
k-means clustering [9]. Clearly, finding a “perfect” clustering
algorithm that computes two partitions for a group, one for
correctly categorized entities and the other for mis-categorized
entities, will fail as verified in Section VI.

II. PROBLEM AND NOTATION

Problem. Given a group G of entities that have been cat-
egorized together by existing algorithms, the problem of
discovering mis-categorized entities is to find the proper subset
G1 Ă G that should not belong to this group.

Next, we define the notations that are used in this paper.
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Venue

Computer Science Chemical Sciences…

Chemical Sciences (general) …Database …

VLDBSIGMOD … RSC Advances …

System

ICPADS …
Fig. 4. Google Scholar Metrics

Entities. An entity e is defined over a multi-valued relation
RpA1, . . . , Amq of m attributes (a.k.a. fields or features). Each
attribute Ai of an entity can take a list of values. We write
erAis the attribute value of e on attribute Ai.
Groups. A group G is a set of entities te1, . . . , enu.

Example 3: [Entities.] Consider entities in Figure 1, which are
defined over the relation pTitle, Authors, Venueq. Entity e1

has three attributes, and e1rAuthorss contains multi-values
{Xu Chu, John Morcos, Ihab F. Ilyas, Mourad Ouzzani, Paolo
Papotti, Nan Tang}.
[Groups.] Nan’s group is shown in Figure 1. l

Positive Rules. A positive rule ϕ`pe, e1q is a conjunction of
predicates: ϕ`pe, e1q “

Ź

AiPR
fipAiq ě θi, where fipAiq is a

similarity function and θi is a threshold. ϕ`pe, e1q is evaluated
to be true if all predicates fipAiq ě θi return true, indicating
the two entities e and e1 are “similar” and should be
categorized together. Otherwise, ϕ`pe, e1q returns false, if
any of the predicates returns false, indicating we do not know
whether they should be in the same group.
Negative Rules. A negative rule φ´pe, e1q is defined similarly:
φ´pe, e1q “

Ź

AiPR
fipAiq ď σi. φ´pe, e1q is evaluated to be

true if all predicates fipAiq ď σi return true, indicating e and
e1 are “dissimilar” and should not be categorized together.
Otherwise, φ´pe, e1q returns false, if any of the predicates
returns false, indicating we do not know whether they should
be in different groups.

We will simply write ϕ` (resp. φ´) as a positive (resp. a
negative) rule, when pe, e1q is clear from the context.
Similarity Functions. Without loss of generality, we consider
three types of similarity functions f to quantify the similarity
between two values on attribute A.
(i) Set-based. It first splits each value into a set of tokens and
then utilizes the set-based similarity to quantify the similarity,
such as overlap and Jaccard similarity.
(ii) Character-based. It measures the similarity between two
values based on character transformations, like edit distance.

The above similarity functions have a common limitation
that they mainly use the symbolic (or textual) information,
while ignoring the semantics, which is important to the entity
categorization problem. To this purpose, we propose to use
ontology to capture the semantics-aware similarity.
(iii) Ontology-based. Ontology is usually modeled by a tree
structure, e.g., the ontology for venues of publications pro-
vided by Google Scholar Metric1 is shown in Figure 4.

1https://scholar.google.com/citations?view op=top venues.

Algorithm 1: DIME: Rule-based Framework
Input: a group G “ te1, ..., enu, a set of positive rules

tϕ`1 , . . . ϕ
`
x u, a set of negative rules tφ´1 , . . . φ

´
y u

Output: mis-categorized entities G´

// Step 1: Computing Disjoint Partition Set P
1 Construct a graph G “ pV, Eq, where V “ G, E “ H;
2 for each entity pair pe, e1q P GˆG do
3 if Dϕ`i such that ϕ`i pe, e

1
q returns true then

4 E Ð E Y tpe, e1qu;
5 Compute the connected components of G;
6 Let P denote the set of connected components in G;

// Step 2: Identifying The Pivot Partition P˚

7 Let P˚ PP (the one with the largest size) be pivot partition;
// Step 3: Discovering Mis-Categorized Entities G´

8 for each partition P P PztP˚u do
9 if DpePP, e˚ PP˚, φ´ PΣ´q, φ´pe, e˚q returns true then

10 G´
Ð G´

Y P ;

11 Return G´

We use a tree structure to define the ontology similarity.
Given two entities, we map them to tree nodes2, and the
ontology similarity is computed based on their lowest common
ancestor (LCA), which is formally defined as follows.

ONTOLOGY SIMILARITY. Given two entities e and e1, suppose
their mapping nodes on the ontology tree are n and n1, re-
spectively. Their ontology similarity is defined as: 2|LCApn,n1q|

|n|`|n1| ,
where LCApn, n1q is the lowest common ancestor of n and n1,
and |n| is the depth of node n in the tree (the depth of the
root is 1). Two entities are similar if their similarity is larger
than a threshold τ .

Example 4: [Ontology Similarity.] Consider the tree structure
of venues in Figure 4, and two nodes SIGMOD and VLDB.
They have rather small string similarity. However, they have
a large ontology similarity 3

4 , because their depths are both 4
and their LCA is Database with depth 3. l

The rules in Example 2 can be formulated as follows.
ϕ`1 : fovpAuthorsq ě 2
ϕ`2 : fovpAuthorsq ě 1^ fonpVenueq ě 0.75
φ´1 : fovpAuthorsq “ 0
φ´2 : fovpAuthorsq ď 1^ fonpVenueq ď 0.25

where fov denotes overlap similarity (common authors in the
above rules) and fon indicates ontology similarity.

III. A RULE-BASED FRAMEWORK

Our framework DIME is described in Algorithm 1 and
depicted in Figure 5. In a nutshell, it first uses a set of positive
rules Σ` “ tϕ`1 , ¨ ¨ ¨ , ϕ

`
x u as a disjunction (i.e., ϕ`1 _¨ ¨ ¨_ϕ

`
x )

on a group of entities G “ te1, . . . , enu to compute disjoint
partitions (step 1; lines 2-6). The partition with the largest
size is the pivot partition (line 7). Given a set of negative
rules Σ´ “ tφ´1 , ¨ ¨ ¨ , φ

´
y u, we either apply the first rule φ´1 ,

or jointly use φ´1 with the other negative rules in sequence as

2Here we use exact string matching for example. We can also use approx-
imate matching based on similarity functions.
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e1 e2

e3
e5

e4

e6

step 1 step 2 step 3

(a) (b)

e1 e2
e4

e6
e3 e5

(c) (d)

e1 e2

e4

e6e3 e5

e1 e2
e4

e6
e3 e5

Pivot Pivot

Fig. 5. Solution Overview: A Rule-based Framework

φ´1 _φ
´
2 , φ´1 _φ

´
2 _φ

´
3 , and so on, to discover mis-categorized

entities (lines 8-11).

Step 1: Computing Disjoint Partitions. Positive rules are
used to group entities into partitions. Two cases are considered
to put entities e and e1 in the same partition. (i) e and e1 satisfy
a positive rule; or (ii) e and e1 satisfy transitivity – there exists
an entity e2 such that both pe, e2q and pe1, e2q match.

For case (i), we enumerate every entity pair pe, e1q and every
rule ϕ`, and check whether ϕ`pe, e1q returns true. For case
(ii), we first construct a graph, where the vertices are entities
and edges are entity pairs that satisfy a positive rule (computed
from case (i)), and then compute its connected components.
Clearly, the entities in the same connected component satisfy
the transitivity and form a partition.

The complexity of checking whether an entity pair satisfies
a positive rule depends on the similarity functions used in the
rule. For overlap, the complexity of computing the similarity is
Op|e| ` |e1|q, where |e| is the size of e. For edit distance, the
complexity of computing the similarity is Opθminp|e|, |e1|q,
where θ is the similarity threshold and |e| is the length of e. For
ontology, the complexity of computing the similarity is Op|e|`
|e1|q, where |e| is the depth of e’s corresponding node in the
tree structure. For ease of presentation, suppose the complexity
of checking whether an entity pair satisfies a positive rule is
Opυq. The time complexity of checking every entity pair and
every positive rule is Opn2υ|Σ`|q, where n is the number of
entities and |Σ`| is the number of positive rules. The time
complexity of computing connected components (e.g., by a
depth-first traversal) is the number of vertices and edges in
the graph. Thus the overall complexity is Opn2υ|Σ`|q.

Step 2: Identifying the Pivot Partition. The pivot partition
P˚ P P is the one with the largest size, which is treated as
the correctly categorized group.

Step 3: Discovering Mis-Categorized Entities. Given the
set P of partitions and the pivot partition P˚, we use the
negative rules to mark whether other partition P P PztP˚u is
a wrongly categorized partition, such that if P is, all entities
in P are reported as mis-categorized. To discover the mis-
categorized partitions, we enumerate every entity pair pe˚ P
P˚, e P P q, and every negative rule φ´ P Σ´, if φ´pe, e˚q
returns true, we mark P as a wrongly categorized partition.
The complexity of this algorithm is Opn2υ|Σ´|q.

The GUI for Scrolling with Multiple Negative Rules.
Depending on user’s capacity, we provide user with a GUI
to check manually the outputs of multiple combinations of

negative rules, which works pretty well for Google Scholar3.
The benefits are as follows. (1) The positive/negative rules
are provided – the user does not need to know how they are
generated (see Section V for more details). (2) It is cheaper
to manually check our suggested mis-categorized entities than
checking the entire group, since the number of mis-categorized
entities is typically much smaller than the total number of
entities in a group; that is, |G´| ! |G|.

Example 5: [A Rule-based Framework.] Consider the Google
Scholar entities in Example 1, which are shown in Figure 5(a).
(1) Consider positive rules ϕ`1 and ϕ`2 in Example 2. Using
ϕ`1 _ ϕ`2 we can find three partitions P1 : te1, e2, e3, e5u,
P2 : te4u and P3 : te6u, shown in Figure 5(b) (see Example 2
for more explanations about how the partitions are calculated).
(2) The pivot partition P˚ “ P1 is surrounded by the dashed
rectangle in Figure 5(c).
(3) Using negative rules φ´1 _ φ´2 in Example 2, we can
discover mis-categorized entities e4 and e6, as shown in
Figure 5(d) (see Example 2 for more explanations about how
negative rules are used and see Figure 3 for the usage of a
scrollbar that applies either φ´1 or φ´1 _ φ

´
2 ). l

Also, it is practical to make the following assumptions.

ASSUMPTIONS. (1) The pivot partition – the partition with
the largest size – only contains truly categorized entities. The
rationality is that compared with other partitions with much
smaller sizes, the pivot partition is more likely to be correct;
that is, existing algorithms that produce these groups are not
that bad. (2) We assume the transitivity: If e matches e1 and
e1 matches e2, then e and e2 match. l

IV. SIGNATURE-BASED FAST SOLUTION

The naı̈ve method of applying positive/negative rules is
by enumerating all pairs of entities – clearly an expensive
solution. To cope with this issue, we propose a fast signature-
based framework DIME` (Section IV-A). We also study how to
generate signatures of entities for different similarity functions
(Section IV-B). Finally, we present algorithms for processing
positive rules (Section IV-C) and negative rules (Section IV-D).

A. A Signature-Based Framework

We propose a filter-verification framework to efficiently find
entity pairs satisfying given positive or negative rules.
Efficient Algorithms for Positive Rules. The “filter” step: we
generate signatures for each entity w.r.t. each positive rule: If

3Please check our Google Chrome extension for cleaning Google Scholar
pages at https://github.com/TsinghuaDatabaseGroup/googlescholar
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two entities satisfy a positive rule, they must share a common
signature. Thus we can take the pairs of entities that share
common signatures as candidate pairs (and other pairs that do
not share common signatures can be pruned). To find such
candidate pairs, we build a signature-based inverted index for
each positive rule, which keeps a mapping from a signature to
an inverted list of entities that contain the signature. Then the
entity pair on each inverted list is taken as a candidate pair.
We will describe how to generate signatures in Section IV-B.

The “verification” step: we verify the candidate pairs by
computing their real similarity. We use the transitivity to avoid
computing the similarities of unnecessary pairs: If pe, e1q and
pe1, e2q are categorized together, we can infer that pe, e2q
should also be categorized together without further verifying
pe, e2q, which will be elaborated in Section IV-C.

Efficient Algorithms for Negative Rules. A negative rule is
defined on top of partitions. A partition P is dissimilar with the
pivot partition P˚ if there exists a pair of entities pe P P, e˚ P
P˚q and a negative rule φ´ such that φ´pe, e˚q returns true.
To effectively check whether two partitions are dissimilar, we
also utilize the signatures in the “filter” step: If two entities
share common signatures, they may be similar; if two entities
do not share any signature, they must be dissimilar. So, we
generate the signature of a partition which is the union of
signatures of entities in the partition. If two partitions have no
common signatures, they satisfy the negative rule; otherwise,
we verify the pairs of entities across these two partitions.

The “verification” step: we first verify the entity pair with
large probability to be dissimilar, because once we find a pair
satisfying the negative rule, we do not need to verify the other
pairs, which will be discussed in Section IV-D.

Signature-based Algorithm. We present DIME` in Algo-
rithm 2. It first utilizes the signatures to compute disjoint
partitions (lines 1-11 for step 1). It enumerates every entity
e in G, computes its signature g, and builds inverted list
Lϕ`i

pgq for positive rule ϕ`i , which keeps the list of entities
that contain g (lines 1-2). It then computes the entity pairs
in each inverted list as candidate pairs (lines 3-4). Next it
sorts the candidate pairs and builds a graph (line 5-6). If e
and e1 belong to different connected components and satisfy
a positive rule, we add the edge into the graph (lines 7-10).
Then it computes the connected components (line 11).

It then picks the pivot partition (line 12 for step 2).
Finally, it uses the signatures to discover mis-categorized

entities that are not in the pivot partition (lines 13-24 for
step 3). It generates the signature set of pivot partition P˚ by
computing the union of signatures of entities in P˚ for each
negative rule φ´i , denoted by Lφ´i pP

˚q (lines 13-14). Then for
each partition P , it computes its signature set Lφ´i pP q (lines
15-17). If the signature sets of P and P˚ have no overlap, P
is a mis-categorized group (lines 18-19); otherwise, we add
pe P P, e˚ P P˚q into the candidate set (line 20). Then it sorts
the candidate and checks whether each candidate satisfies a
negative rule (lines 22-24). The mis-categorized entities are
then returned (line 25).

Algorithm 2: DIME`: Signature-based Algorithm
Input: a group G “ te1, ..., enu, a set of positive rules

tϕ`1 , . . . ϕ
`
x u, a set of negative rules tφ´1 , . . . φ

´
y u

Output: mis-categorized entities G´

// Step 1: Computing Disjoint Partitions P
1 for each signature g of e P G wrt ϕ`i do
2 L

ϕ`i
pgq Ð L

ϕ`i
pgq Y teu;

3 for each entity pair pe, e1q P L
ϕ`i
pgq do

4 C Ð C Y tpe, e1qu;
5 sort the candidate set C;
6 build a graph G “ pV, Eq, where V “ G, E “ H;
7 for each candidate pe, e1q P C do
8 if e,e1 belong to different connect components then
9 if ϕ`pe, e1q returns true then

10 add an edge pe, e1q to G;

11 PÐ the connect components of G;
// Step 2: Identifying The Pivot Partition P˚

12 Let P˚ P P be the pivot partition; C ÐH;
// Step 3: Discovering mis-categorized Entities G´

13 for each signature g of e P P˚ w.r.t. φ´i do
14 L

φ´i
pP˚q Ð L

φ´i
pP˚q Y tgu;

15 for each partition P P PztP˚u do
16 for each signature g of e P P wrt φ´i do
17 L

φ´i
pP q Ð L

φ´i
pP q Y tgu;

18 if L
φ´i
pP q X L

φ´i
pP˚q “ H then

19 G´
Ð G´

Y P ;

20 else add each pair pe P P, e˚ P P˚q into C ;

21 sort the candidate set C;
22 for each candidate pe P P, e˚ P P˚q P C do
23 if e R G´ and φ´i pe, e

˚
q returns true then

24 G´
Ð G´

Y P ;

25 Return G´

B. Signature Generation
Signatures for Positive Rules. Given a positive rule ϕ` “
Ź

AiPR
fipAiq ě θi, for each predicate fipAiq ě θi, we

generate a signature set Sigiϕ`peq for each entity e such that if
two entities e and e1 can satisfy this predicate, they must share
some common signatures, i.e., Sigiϕ`peq X Sigiϕ`pe

1q ‰ H.
Conversely, if two entities do not share any common signature,
they must be dissimilar. Note that a positive rule ϕ` is a con-
junction of predicates

Ź

AiPR
fipAiq, we have one signature

for an entity e for each predicate, so Sigϕ`peq “ tpg1 P

Sig1
ϕ`peq, g

2 P Sig2
ϕ`peq, ¨ ¨ ¨ , g

|ϕ`| P Sig
|ϕ`|
ϕ`

peqqu, where
Sigiϕ`peq is the signature w.r.t. the i-th predicate.

Next we discuss how to generate the signatures Sigiϕ`peq
for the three kinds of similarity functions.
(i) Set-based. We first set a global ordering on all the tokens
(e.g., document frequency). Then, for each value v in an
attribute, we sort its tokens based on the ordering. For overlap
similarity, given the overlap threshold θ, we select the first
|v|´θ`1 tokens in v as the signatures. Obviously, if two values
are similar (with at least θ common tokens), they must share
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a common signature. This can be extended to other metrics
(please find more details in [14]).
(ii) Character-based. The gram-based method [12] is widely
used to support character-based similarity functions. Take
edit distance as an example. We generate the q-grams (i.e.,
substring with length q) of the value, sort the grams based
on a global ordering, and select the first qθ ` 1 grams as its
signatures. Evidently, if two values are similar (within edit
distance of θ), they must have common signatures [12].
(iii) Ontology-based. For ease of presentation, we use entity e
and its mapping tree node n interchangeably.

Given a node n, if another node n1 is similar to n, we have
2|LCApn,n1q|
|n|`|LCApn,n1q| ě

2|LCApn,n1q|
|n|`|n1| ě θ and |LCApn, n1q| ě θ|n|

2´θ . Let

τn “ r
θ|n|
2´θ s and denote Aτn by the ancestor of n at depth τn.

We can take Aτn as a signature of n. Similarly we can take
Aτn1 as a signature of n1. If n and n1 are similar, both Aτn

and Aτn1 are their LCA, and thus we have Aτn “ Aτn1 or one
is an ancestor of the other, as proved in the following Lemma.

Lemma 4.1: Given two nodes n and n1, if n and n1 are
similar, then we have Aτn “ Aτn1 , or Aτn is an ancestor
or a descendent of Aτn1 . l

Proof: First, if |n| “ |n1|, τn “ τn1 “ r
θ|n|
2´θ s. We can

prove that Aτn “ Aτn1 by a contradiction. Suppose Aτn ‰

Aτn1 . The depth of their LCA must be smaller than τn. Thus

their similarity 2|LCApn,n1q|
|n|`|n1| ď

2pr
θ|n|
2´θ s´1q

2|n| ă
θ|n|

p2´θq|n| ď θ. This
is contradicted to the assumption that they are similar.

Second, if |n| ă |n1|, we can prove that Aτn is an ancestor
of Aτn1 by a contradiction. Suppose Aτn is not an ancestor of
Aτn1 . The depth of their LCA must be smaller than τn. Thus
their similarity is smaller than θ. This is also contradicted to
the assumption that they are similar.

Third, if |n| ą |n1|, we prove Aτn is a descendent of Aτn1

by a contradiction. Suppose Aτn is not a descendant of Aτn1 .
The depth of their LCA must be smaller than τn1 . Thus their
similarity is smaller than θ. So there is a contradiction.

It is very efficient to check whether Aτn “ Aτn1 , but it
is not easy to check the ancestor-descendant relationship. We
propose to use node signatures to address this issue.
Node Signature. Let τn,n1 “ minpτn, τn1q denote the smaller
depth of nodes Aτn ,Aτn1 . If we take the nodes at depth τn,n1
as a signature of n and n1, they must be the same node when
n is similar to n1. To generate the signature for all nodes, we
set τmin as the minimum depth of their signatures. Then for
each node n, we select Aτmin as its node signature and use
this signature to find similar entities.

Example 6: [Node Signature.] Consider three nodes Computer
Science, Database, VLDB in Figure 4. Suppose θ “ 0.75.
Their τn are respectively r 0.75˚2

2´0.75 s “ 2, r 0.75˚3
2´0.75 s “ 2, and

r 4˚0.75
2´0.75 s “ 3. Thus their signatures are Computer Science,

Computer Science, and Database, respectively. Their node
signatures are all Computer Science. l

Lemma 4.2: Given two nodes n and n1, if n and n1 are similar,
their node signatures must be the same. l

Proof: Suppose their node signatures are not the same
node. The depth of their LCA must be smaller than τn,n1 . Thus
their similarity is smaller than 2θτn,n1

p2´θq2τn,n1
ď θ.

Example 7: [Signatures for Positive Rules.] Consider e1

in Figure 1 and two positive rules ϕ`1 , ϕ
`
2 below Exam-

ple 4. ϕ`1 has only one predicate fovpAuthorsq ě 2,
and the signatures of e1 w.r.t. ϕ`1 are Sigϕ`1

pe1q “ {Xu
Chu, John Morcos, Mourad Ouzzani, Paolo Papotti, Ihab
F. Ilyas}. ϕ`2 has two predicates p1 : fovpAuthorsq ě 1
and p2 : fonpVenueq ě 0.75. As for p1, the signatures
are all authors. As for p2, the node signature of SIGMOD
is Database. Thus, the signature set of e1 w.r.t. ϕ`2 is
Sigϕ`2

pe1q “ {(Xu Chu,Database), (John Morcos,Database),
(Mourad Ouzzani,Database), (Paolo Papotti,Database), (Ihab
F. Ilyas,Database), (Nan Tang,Database)}. l

Signatures for Negative Rules. We generate the signature set
for an entity w.r.t. a negative rule similar to the positive rule.
The difference is that the thresholds θi{σi are different. If two
entities e and e1 have no common signature in every predicate,
they must satisfy the negative rule φ´.

C. Filter & Verification for Positive Rules

Filter Strategy for Positive Rules. For each positive rule
ϕ`i , we build an inverted index of the signatures of all entities,
where each inverted list maintains a mapping from a signature
to a list of entities that contain the signature – Lϕ`i

psigq
contains the set of entities with sig as a signature. Then every
entity pair pe, e1q on Lϕ`i psigq is a candidate pair. Two entities
that are not on the same inverted list cannot be similar – they
do not share any common signature.
Verification Acceleration for Positive Rules. It is expensive
to verify whether an entity pair satisfies a positive rule (see
Section III). To address this issue, we can use transitivity
to avoid verifying unnecessary pairs. Given a candidate pair
pe, e1q, we check whether they are in the same connected
components with a constant time complexity4. If so, we do
not need to verify the pair.
Verification Order of Candidate Pairs. The order of veri-
fying the candidate pairs will affect the performance. If we
know that pe, e1q match and pe1, e2q match, we can deduce
that pe, e2q match. Thus we can deduce the answer of pe, e2q
based on those of pe, e1q and pe1, e2q. Wang et al. [23] proved
that it is optimal to ask the candidate pairs sorted by the
probabilities in descending order, and they used the similarity
to approximate the probability. The similarity, however, is
expensive to compute. Thus, we propose a new method to
sort the entity pairs taking both computational cost and similar
probability into consideration.
Benefit Order. We compute the benefit of verifying a can-
didate pair. Suppose that each candidate pair pe, e1q has a

4We assign each entity a partition ID. If e and e1 are verified that they
satisfy a positive rule, we update their partition ID to the same ID. Assume
the group ID of e is i and that of e1 is j, and i ă j, we change the partition
ID of e1 to i.
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verification cost Cpe, e1q and similar probability Ppe, e1q. We
compute the benefit Bpe, e1q “ Ppe,e1q

Cpe,e1q . Obviously, the larger
benefit a candidate pair is, the better it is to verify with low
cost. Thus we compute the benefit for each pair and verify the
candidates sorted by the benefits in a descending order.

Next we discuss how to compute the verification cost and
the similar probability.
Verification Cost. The cost of verifying whether pe, e1q can
satisfy a positive rule is the sum of the cost of verifying
whether pe, e1q can satisfy each predicate. The well-known
verification algorithm for edit distance (character-based sim-
ilarity) is the dynamic-programming algorithm with the time
cost of Opθminp|e|, |e1|qq, where θ is the similarity threshold.
The verification algorithm for Jaccard (set-based similarity) is
Op|e|`|e1|q. The verification cost for ontology-based similarity
is Op|de| ` |de1 |q where de denotes the depth of the node in
the tree that entity e can match.
Similar Probability. The probability of whether pe, e1q can
satisfy a positive rule is hard to compute. To address this
issue, we can use their shared signatures to approximate
the probability, which is the ratio of the number of shared
signatures to their average signature number.

Example 8: [Efficient Checking for Positive Rules.] Given
entities in Figure 1 and two positive rules ϕ`1 , ϕ

`
2 below

Example 4. We generate two candidates tpe1, e3q, pe2, e5qu for
ϕ`1 , and three candidates tpe1, e2q, pe1, e3q, pe2, e3qu for ϕ`2 .

Then, we need to decide the order of verification. The
cost of verifying pe1, e3q w.r.t. ϕ`1 is Cpe1, e3q “ 10, and
the similarity probability is Ppe1, e3q “

1
4 “ 0.25. Thus,

the benefit of verifying pe1, e3q is 0.025. We also compute
the benefit for other candidates, and finally sort them as
tpe2, e5qϕ`1

, pe1, e3qϕ`1
, pe1, e3qϕ`2

, pe2, e3qϕ`2
, pe1, e2qϕ`2

u. In
this order, we only verify pe2, e5q, pe1, e3q for ϕ`1 and pe2, e3q

for ϕ`2 , then e1, e2, e3, e5 are in the same partition. l

D. Filter & Verification for Negative Rules

Filter Strategy for Negative Rules. After specifying the
pivot partition P˚, we utilize the signatures to detect mis-
categorized entities from another partition P P PztP˚u.
For each negative rule φ´i , it generates the signature set
Lφ´i

pP˚q of P˚, and the signature set Lφ´i pP q of P . If
Lφ´i

pP˚q X Lφ´i
pP q “ H, P is mis-categorized partition;

otherwise, we add pe P P, e˚ P P˚q into the candidate set.
Verification Acceleration for Negative Rules. It is also
inefficient to verify every candidate pe P P, e˚ P P˚q. Note
that once we find a dissimilar pair, P is a mis-categorized
partition. In other words, if φ´pe, e˚q returns true, there is
no need to verify other entities from P . Thus we want to first
verify the pair with the smallest probability in order to prune a
partition. In addition, the pair pe, e˚q with smaller verification
cost Cpe, e˚q should be verified first. So, the benefit should
be defined as 1

Cpe,e˚qPpe,e˚q . Then we compute the benefit of
each entity pair and verify the pairs sorted by the benefit in a
descending order.

Example 9: [Efficient Checking for Negative Rules.] Fol-
lowing the above example, partition P1 : te1, e2, e3, e5u is
regarded as the pivot partition P˚. Consider the negative rules
φ´1 , φ

´
2 below Example 4 and other two partitions P2 : te4u

and P3 : te6u. We can conclude that P2 is mis-categorized
partition based on φ´1 , because Lφ´1 pP2q “ {Yunqing Xia, NJ
Tang, Amir Hussain, Erik Cambria} which cannot match any
signature of the entities in P˚. In the same way, we can detect
that P3 is also a mis-categorized partition based on φ´2 since
Lφ´2

pP˚q X Lφ´2
pP3q “ H. l

V. RULE GENERATION

Now let’s shift gears and discuss how to generate posi-
tive/negative rules from examples. A positive/negative example
is a pair of entities that are/aren’t in the same category. Note
that finding “good examples” is a known challenging problem
in training EM models [20], where the good examples nor-
mally refer to the non-matched entity pairs that are likely to be
confused as matches. Fortunately, in our case, it is much easier
to find good examples, since we only find examples within
groups and mis-categorized entities can be paired with any
other correctly categorized entities as good examples. Another
challenge, which is not well addressed in the literature, is how
to derive rules only from examples.

A. Positive Rule Generation

Positive Rule Generation. Given a multi-valued relation
RpA1, ..., Amq, a set of positive examples S`, a set of negative
examples S´, and a library of similarity functions F , the
problem is to find a set Σ` of positive rules to maximize
a pre-defined objective function FpΣ`,S`,S´q.
Objective Function. Consider a set of positive rules Σ`. Given
a rule ϕ` P Σ`, let Eϕ` be the set of entity pairs satisfying ϕ`

and EΣ` “
Ť

ϕ`PΣ` Eϕ` . To evaluate the quality of Σ`, we
focus on a general case of objective function FpΣ`,S`,S´q:
the larger |EΣ` X S`|, the larger FpΣ`,S`,S´q; and the
smaller |EΣ`XS

´|, the larger FpΣ`,S`,S´q. Many functions
belong to this general case, e.g., FpΣ`,S`,S´q “ |EΣ` X

S`| ´ |EΣ` X S´|.
From Infinite to Finite. A naı̈ve method of rule generation is
to enumerate all possible rules and then select some of them
to maximize the objective function. Then, a problem arises:
Whether the number of all possible positive rules is finite? The
answer is yes. Each rule contains at most m predicates, where
m is the number of attributes. For each predicate, there are |F |
similarity functions that can be chosen. Although it seems to
have infinite similarity thresholds, we can pick finite thresholds
which can also maximize the objective function. Next we use
an example to illustrate the idea. Consider a rule ϕ` with a
single predicate fpAq ě θ1 and another rule ϕ1` with a single
predicate fpAq ě θ2 by relaxing θ1 to θ2 (θ2 ă θ1). Obviously,
Eϕ` Ď Eϕ1` . If there is no positive example in Eϕ1`zEϕ` , then
Fpϕ`,S`,S´q ě Fpϕ1`,S`,S´q, and we only need to keep
θ1. Then, a question is: Which thresholds affect the number of
satisfied positive examples? We compute the similarity for all

7



positive examples on attribute A, and only these similarities
can affect the number of satisfied positive examples. Thus, the
number of possible thresholds for an attribute is only |F ||S`|.

Theorem 3: Consider a set of positive examples S`, a set of
negative examples S´, an objective function FpΣ`,S`,S´q,
and two sets of positive rule Σ`1 ,Σ

`
2 . Suppose Σ`2 is trans-

formed from Σ`1 that only replacing fpAq ě θ1 in Σ`1 by
fpAq ě θ2. If θ2 ă θ1 and there is no positive example in
EΣ`2

zEΣ`1
, FpΣ`2 , P,Nq ď FpΣ`1 , P,Nq. l

The correctness of theorem have been proved in [24]. Based
on this idea, we can generate a finite set of predicates for
each attribute. Let C`p pAq denote all candidate predicates of
attribute A. For each similarity function f P F and each pair
of positive examples pe, e1q from S`, we compute θ based on
fpAq for e and e1, and add fpAq ě θ into C`p pAq. For all
other thresholds, we can safely prune them since they cannot
provide a higher objective value.

Example 10: [Candidate Predicates.] Consider the entities in
Figure 1, we have positive examples and negative examples
as follows:
S` “ tpe1, e2q, pe1, e3q, pe1, e5q, pe2, e3q, pe2, e5q, pe3, e5qu;
S´“tpe1,e4q,pe1,e6q,pe2,e4q,pe2,e6q,pe3,e4q,pe3,e6q,pe4,e5q,pe5,e6qu.
Based on Theorem 3, we have the following
predicates. For ease of presentation, we use specific
similarity function for each attribute: C`p pTitleq“
tfjpTitleqě0.3, fjpTitleqě0.07, fjpTitleqě0.05u;
C`p pAuthorsq “ tfovpAuthorsq ě 2, fovpAuthorsq ě 1u;
C`p pVenueq “ tfonpVenueq ě 0.75, fonpVenueq ě 0.5u; l

Based on the finite set of possible predicates on each
attribute Ai, we can generate all possible rules by selecting
0-1 predicate from each set C`p pAiq for 1 ď i ď m. Let Σ`a
denote the set of all possible rules. Then from Σ`a , we aim
to find a subset to maximize the the objective function. We
prove that this problem is NP-hard by a reduction from the
maximum coverage problem.
Theorem 4: The rule generation problem is NP-hard. l

B. An Enumeration Algorithm
Any subset Σ`c of Σ`a is a candidate set of positive

rules. We enumerate each subset Σ`c , compute its objective-
function value, and select the one with the maximal value.
Obviously, there are large numbers of candidates, i.e., 2|Σ

`
a | “

Op2|F |m|S`|mq, where m is the number of attributes, |F | is
the number of similarity functions, and |S`| is the number of
positive examples. Clearly, this enumeration-based method is
rather expensive.

Example 11: [Enumeration Algorithm.] We can enumerate
35 positive rules based on C`p pTitleq, C`p pAuthorsq and
C`p pVenueq such as

fjpTitleq ě 0.31 ^ fovpAuthorsq ě 2 ^ fonpVenueq ě 0.75
or fjpTitleq ě 0.31 ^ fovpAuthorsq ě 2 ^ fonpVenueq ě 0.5
or fjpTitleq ě 0.31 ^ fovpAuthorsq ě 1 or ...

Then, we enumerate all combinations of these positive rules
to construct candidate set of rules. Suppose that Σ`c con-

tains the above three rules and the objective function is
FpΣ`,S`,S´q “ |EΣ` X S`| ´ |EΣ` X S´|. As EΣ`c

“

tpe1, e3qu, FpΣ`c ,S`,S´q “ 1. For other candidates, we also
compute their objective-function value, and then select the one
with the maximal value. l

C. A Greedy Algorithm
Due to the high computational complexity of the enumera-

tion algorithm, we propose a greedy algorithm to find a near-
optimal set of rules Σ̂`. Initially Σ̂` “ H, and we greedily
choose the currently best rule until the objective-function value
cannot be improved. To generate the best rule ϕ`, we greedily
select the best predicate as follows.

Given a set of positive examples S`, a set of negative
examples S´, and sets of candidate predicate C`p pAiq for each
attribute Ai, we first choose the best predicate to initialize
the rule ϕ` “ fpAq ě θ which has the maximal objective-
function value Fpϕ`,S`,S´q. Meanwhile, we update the
example set S`,S´ to S1`,S1´ by removing the examples
that cannot satisfy ϕ`.

Afterwards, we pick another predicate p1 to join with ϕ`

which can prune the negative examples that have satisfied
ϕ` as many as possible (smaller |Ep1 X S1´|) and keep the
positive examples as many as possible (larger |Ep1 X S1`|).
Thus, we select the one with the maximal objective-function
value Fpp1,S1`,S1´q and update the positive rule as ϕ` “
fpAq ě θ ^ fpA1q ě θ1. Another predicate will be chosen
until Fpϕ`,S`,S´q cannot be improved and we get ϕ`.

We can generate a set of rules Σ̂` on the basis of the steps
stated above. Note that after ϕ` is added into Σ̂`, we should
update the example set S`,S´ to S2`,S2´ by removing
the examples that satisfy ϕ` and make use of S2`,S2´ to
measure the performance of other positive rules. The algorithm
terminates when FpΣ`,S`,S´q cannot be improved.

Example 12: Consider the entities in Figure 1. The positive
examples, negative examples, all predicates and the objective
function are the same with the above example.

At first, we will compute the score of objective function for
all predicates. Let p1 denote the predicate fovpAuthorsq ě 2.
As Ep2 “ tpe1, e3q, pe2, e5qu, Fpp1,S

`,S´q “ 2 ´ 0 “ 2.
Actually, it is the predicate whose objective value is maximum.
So we first initialize the rule ϕ`1 “ p1 and update the example
set as S1` “ tpe1, e3q, pe2, e5qu and S1´ “ H. Since the set
of negative examples is empty, we generate one positive rule
ϕ`1 : fovpAuthorsq ě 2.

Next, we update the example set by removing
the examples that satisfy ϕ`1 . Then, S2` “

tpe1, e2q, pe1, e5q, pe2, e3q, pe3, e5qu and S2´ “ tpe1, e4q,
pe1, e6q, pe2, e4q, pe2, e6q, pe3, e4q, pe3, e6q, pe4, e5q, pe5, e6qu.
We re-evaluate the values of objective function for
all predicates, and generate another positive rule ϕ`2 :
fovpAuthorsq ě 1

Ź

fonpVenueq ě 0.75. l

D. Negative Rule Generation

The goal of negative rules is to identify mis-categorized
partitions. Thus we want to select the negative rules Σ´ to
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cover more negative examples (larger |EΣ´ X S´|) and less
positive examples (smaller |EΣ´XS

`|). The objective function
should be FpΣ´,S`,S´q “ |EΣ´XS´|´|EΣ´XS`|, or other
functions that can measure the target. Theorem 3 also can be
utilized to generate a finite set of predicates for each attribute.
Let C´p pAq denote all candidate predicates of attribute A. For
each similarity function f P F and each pair of negative
examples pe, e1q from S´, we compute σ “ fperAs, e1rAsq
and add fpAq ď σ into C´p pAq. Recall that in each step of our
greedy algorithm, we can generate a negative rule φ´ which
has the maximal score based on Fpφ´,S`,S´q. Thus, these
rules can be applied in the order of generation.

VI. EXPERIMENTS

We conduct experiments to answer the following questions:
(Exp-1) How good is our approach compared with entity
matching solutions?
(Exp-2) How good is our approach compared with machine
learning approaches?
(Exp-3) What is the effect of multiple negative rules?
(Exp-4) What is the effect of positive rules?
(Exp-5) How efficient is our signature-based algorithm?
(Exp-6) How good are our rule generation methods?

A. Experimental Setup

Datasets. (1) Google Scholar. We crawled 200 Google
Scholar pages (i.e., groups), with the average number of 340
entities in a group, all from recent SIGMOD/VLDB/ICDE
PC members. Each entity consists of eight attributes:
Title, Authors, Date, Venue, Volume, Issue, Pages

and Publisher. (2) Amazon Product. We downloaded
the data from http://jmcauley.ucsd.edu/data/amazon/links.html
[17]. We used 4286 product categories and each prod-
uct has 8 attributes: Asin, Title, Brand, Also bought,
Also viewed, Bought together, Buy after viewing and
Description.
Mis-categorized Entities. We did not inject mis-categorized
entities to Google Scholar because they were dirty orig-
inally. Their ground truth was manually verified. For
Amazon Product, we injected some products from similar
categories to a group as mis-categorized entities. The errors
were produced with a rate e%, i.e., the percentage of the
number of mis-categorized entities over all entities.
Ontologies. Ontologies are not available for all attributes.
Fortunately, some are publicly available, e.g., Google Scholar
Metrics for Venue (see Section II). For the attributes that
do not have ontologies in presence, we can build them. For
instance, for product description, we utilized Latent Dirichlet
Allocation (LDA) [6] to learn a theme hierarchy structure.
Positive/Negative Rules. The positive/negative rules were
generated as described in Section V. For Google Scholar,
we used two positive rules and three negative rules, learned
from 229 positive examples and 201 negative examples.
ϕ`1 : fovpAuthorsq ě 2

ϕ`2 : fovpAuthorsq ě 1^ fonpVenueq ě 0.75

φ´1 : fovpAuthorsq “ 0

φ´2 : fovpAuthorsq ď 1^ fonpVenueq ď 0.25

φ´3 : fovpAuthorsq ď 1^ fonpTitleq ď 0.25

Three positive rules and two negative rules were applied in
Amazon Product, learned using 247 positive examples and
245 negative examples. The entities associated with these
training examples were removed for testing data.
ϕ`3 : fovpAlso boughtq ě 2^ fovpAlso viewedq ě 2

ϕ`4 : fovpBought togetherq ě 1^ fonpDescriptionq ě 0.75

ϕ`5 : fovpBuy after viewingq ě 1^ fonpDescriptionq ě 0.75

φ´4 : fovpAlso boughtq “ 0^ fonpDescriptionq ď 0.5

φ´5 : fovpAlso viewedq “ 0^ fonpDescriptionq ď 0.5

Algorithms. We have implemented the following algorithms.
(i) DIME: the basic algorithm in Section III; and (ii) DIME`:
the signature-based fast algorithm in Section IV. For compar-
ison, we have implemented (iii) CR [2], which is a collective
relational entity linkage solution; and (iv) SVM [3], which is
a machine learning (ML) approach for classifying entity. For
rule generation, we compared with (v) DecisionTree [10],
which is a ML-based rule generation method; and (vi)
SIFI [24], a heuristic-based approach that searches optimal
similarity functions and thresholds for a given rule structure.
Algorithm Parameters. For CR, we picked three thresholds
0.5, 0.6, 0.7 and show the best results. That is, when the
minimum distance between two groups was larger than the
thresholds, CR stopped merging groups and terminated. We
used SVM with linear kernel and balanced class weights to
optimize F-measure. DecisionTree was run with maximum
depth 4, and for SIFI, we asked an expert to formulate the
structure of rules who was familiar with similarity functions
and our datasets.
Effectiveness Metrics. We used precision, recall, and F-
measure to measure the effectiveness.
Experimental Environment. We implemented DIME, DIME`

and CR in Java, and obtained the Java implementation of
SVM from Bilenko et al. [3]. DecisionTree and SIFI were
acquired from the authors. All tests were conducted on a PC
with a 2.80GHz Intel CPU and 16GB RAM.

B. Experimental Results
Exp-1: Comparison with EM Approach. We first compared
with a collective relational EM solution CR, which was a
hierarchical clustering based algorithm that grouped entities
based on their distances. In our experiments, we first ran CR

to group entities, and then regarded the entities which did not
belong to the maximal group as mis-categorized entities.

Figure 6 reports the results of comparison about the ac-
curacy. Since Google Scholar was dirty originally, we only
varied the error rate of Amazon from 10% to 40%. Note that
we used three negative rules for Google Scholar and two
negative rules for Amazon. In this part, we report the best
precision and recall, when the user dragged the scrollbar, i.e.,
we showed the best result that our approach can provide. For
CR, we tried three termination thresholds and reported the best.

Figure 6 shows that our method achieved higher precision
and recall than CR, and certainly higher F-measure. The reason
is that: (1) Some correct entities appeared in small partitions.
Without the help of negative rules, these entities were regarded
as mis-categorized entities in CR. That is why EM approaches
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Fig. 6. Compare with State-of-the-art Algorithms

Q
ua

lit
y

0

0.3

0.6

0.9

1.2

Effectiveness Metrics

Precision Recall F-measure

DIME CR SVM

Q
ua

lit
y

0

0.3

0.6

0.9

1.2

Effectiveness  Metrics

Precision Recall F-measure

NR1 NR2 NR3

0.
91

0.
7 0.

83 0.
94

0.
93

0.
9

0.
94

0.
8

0.
86 0.

92

0.
83 0.
87

0.
85 0.

92

0.
88

0.
82

0.
96

0.
88

�2

(a) Scholar

Pr
ec

is
io

n

0

0.3

0.6

0.9

1.2

Error Rate(%)
10 20 30 40

NR1 NR2

R
ec

al
l

0

0.3

0.6

0.9

1.2

Error Rate(%)
10 20 30 40

NR1 NR2

F-
m

ea
su

re

0

0.3

0.6

0.9

1.2

Error Rate(%)
10 20 30 40

NR1 NR2

0.
94

0.
94

0.
95

0.
95

0.
93 0.
94

0.
94

0.
94

0.
91

0.
93

0.
90

0.
850.

96

0.
94

0.
92

0.
87

0.
92 0.
93

0.
92

0.
90

0.
900.
94

0.
94

0.
93

�2

(b) Precision (Amazon)

Pr
ec

is
io

n

0

0.3

0.6

0.9

1.2

Error Rate(%)
10 20 30 40

NR1 NR2

R
ec

al
l

0

0.3

0.6

0.9

1.2

Error Rate(%)
10 20 30 40

NR1 NR2

F-
m

ea
su

re

0

0.3

0.6

0.9

1.2

Error Rate(%)
10 20 30 40

NR1 NR2

0.
95

0.
94

0.
93

0.
910.
93 0.
94

0.
92

0.
89 0.
91

0.
93

0.
90

0.
850.

96

0.
94

0.
92

0.
87

0.
93

0.
93

0.
91

0.
88

0.
880.

94

0.
94

0.
92

�2

(c) Recall (Amazon)

Pr
ec

is
io

n

0

0.3

0.6

0.9

1.2

Error Rate(%)
10 20 30 40

NR1 NR2

R
ec

al
l

0

0.3

0.6

0.9

1.2

Error Rate(%)
10 20 30 40

NR1 NR2

F-
m

ea
su

re

0

0.3

0.6

0.9

1.2

Error Rate(%)
10 20 30 40

NR1 NR2

0.
94

0.
94

0.
95

0.
95

0.
93 0.
94

0.
94

0.
94

0.
91

0.
93

0.
90

0.
850.

96

0.
94

0.
92

0.
87

0.
92 0.
93

0.
92

0.
90

0.
900.
94

0.
94

0.
93

�2

(d) F-measure (Amazon)
Fig. 7. Effectiveness of Scrollbar

cannot be directly applied to solve our problem. (2) We used
ontology similarity to measure the similarity in attribute Venue
and Description rather than traditional string similarity,
which resulted in higher accuracy. For example, given two
entities with no coauthor and with venue “International Con-
ference on Very Large Data Bases” and “ACM Transactions
on Database Systems” respectively, CR may put them into
different groups because of low string similarity. On the other
hand, we can judge that these two venues belong to the same
field. (3) CR started with the resolutions that only considered
attribute string similarity. As an iterative method, one incorrect
decision in CR lead to more errors in the following iterations.

From the experimental results, we could find that the clus-
tering based methods for outlier detection cannot be applied
to our problem, because they defined the clusters with small
sizes to be outliers, but some mis-categorized entities may be
in large partitions while some correct entities may appear in
small partitions.
Exp-2: Comparison with ML Approach. We also compared
with a ML-based method SVM, which has been shown to out-
perform other machine-learning techniques for classification.
We trained two SVM models. The first extracted features from
entities and converted each entity to a vector for classifica-
tion. The positive examples were taken as the entities that
should be in the category and the negative examples were
mis-categorized entities. In the second one, the features in
positive/negative examples were the similarities between two
entities that should/shouldn’t in the same category. Then it
grouped entities and regarded the entities not in the maximal
group as mis-categorized entities. Since the similarities be-
tween examples were rather important, the latter model was
better. Thus we used the latter in SVM.

Figure 6 shows that our method had higher precision and
recall than SVM in Google Scholar. In Amazon dataset, we
achieved a little higher precision than SVM but had much
higher recall, which is often favored in such applications of
discovering mis-categorized entities. When putting together,
our method achieved much higher F-measure.

It is noteworthy that when error rate e% increased, the
precision of our method moderately increased. This was be-
cause when more mis-categorized entities existed in the group,
we found that LDA worked better to differentiate the product
description of correct entities from mis-categorized entities.
Thus, less false positive would exist. As e% increased, the
recall of all methods decreased. The reason is that, more mis-
categorized entities were injected into the dataset as noise
which had similar buying behavior and product description.
Thus, it became harder to detect them.
Exp-3: Effectiveness of Tuning Negative Rules. In this set
of experiments, we studied the effect of tuning negative rules.
Recall that we used three negative rules for Google Scholar

and two negative rules for Amazon. By default, we showed
the user the discovered mis-categorized entities by the first
negative rule, and the user can then drag the scrollbar to see
the results using other negative rules.

The average results of applying three negative rules for
Google Scholar are shown in Figure 7(a), and the results
of applying two negative rules for Amazon in different error
rate are presented in Figures 7(b)–7(d). As shown in the recall
figure, the recall value increased when applying more negative
rules, which was expected because more mis-categorized en-
tities could be captured. As a trade-off, the precision value
decreased, since some correct entities which were not so
similar with others were regarded as mis-categorized.

We present the specific results of 20 Google Scholar pages
in Figure 8, as different groups have different performances
when tuning negative rules. For precision, the first negative
rule was the best, which verified that our choice using only
author names as the default discriminative attribute in the first
negative rule was valid. A further observation is that in most
cases, using the default negative rule can get the best precision
and close to the best recall. Thus in most cases, the user did
not need to touch the scroll bar at all. However, there were
several cases, such as Nan Tang, Cong Yu, that needed to use
more negative rules to find more mis-categorized entities.

It deserves to notice that our tool only suggests mis-
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Table 1

NR1 NR2 NR3

Precision Recall Precision Recall Precision Recall

Jeffrey 0.99 0.79 0.99 0.83 0.99 0.99

Wenfei 0.99 0.85 0.98 0.90 0.98 0.93

Nan 0.98 0.67 0.97 0.94 0.97 1.00

Cong 1.00 0.41 0.92 0.76 0.84 0.91

Zhifeng 0.87 0.39 0.85 0.70 0.80 0.87

Divyakant 0.98 0.94 0.93 0.95 0.89 0.96

Francesco 0.94 1.00 0.86 1.00 0.40 1.00

Samuel 1.00 0.94 0.92 1.00 0.76 1.00

Tamer 0.88 1.00 0.82 1.00 0.80 1.00

Juliana 0.82 0.86 0.72 0.95 0.60 0.95

Ullman 0.81 1.00 0.80 1.00 0.78 1.00

Divesh 0.97 0.97 0.87 1.00 0.83 1.00

Guatavo 0.86 0.93 0.56 0.96 0.45 0.96

Jennifer 0.89 0.94 0.71 0.94 0.60 1.00

Anhai 0.73 0.89 0.67 0.89 0.60 1.00

Torsten 1.00 1.00 0.80 1.00 0.50 1.00

Marcelo 0.88 0.88 0.85 0.88 0.82 1.00

Nikos 1.00 1.00 0.53 1.00 0.45 1.00

Tim 1.00 1.00 0.50 1.00 0.50 1.00

Laks 0.75 1.00 0.66 1.00 0.46 1.00
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Fig. 8. Effectiveness of Scrollbar (Google Scholar Details)

categorized entities. It was up to the user to decide which
ones to remove from their own group. Hence, the high recall
and good precision together made our proposal an ideal tool
for cleaning mis-categorized entities.

Exp-4: Effectiveness of Positive Rules. We tested the good-
ness of our positive rules of grouping entities, which can better
understand the reported results in the above experiments. We
omitted the result for Amazon as the result was equally good.

Table I shows statistics of 20 Google Scholar pages after
applying our positive rule to form initial disjoint partitions
in step 1 (refer to Figure 5 for more details). The table
reads as following, taking Divyakant for instance. Given 652
publications in Divy’s Google Scholar page, we computed
104 partitions whose sizes were ă 10, the number of total
entities in these 104 partitions was 147 that contained 104 mis-
categorized entities. Also, there were 2 partitions whose sizes
were in r10, 100q that contained 35 entities where 21 were
mis-categorized entities. Moreover, there were 2 partitions
whose sizes were in r100, 1000q that contained 480 entities
without any mis-categorized entities. All numbers about mis-
categorized entities were highlighted in red.

Table I first tells us that most mis-categorized entities
appeared in small partitions, which verified the effectiveness of
our conservative positive rule that successfully isolated them.
This also helps to explain why our negative rules can discover
mis-categorized entities in the above experiments.

Exp-5: Efficiency Study. We compared the efficiency of our
proposed algorithms with two baselines CR and SVM.

The tested Google Scholar page contained at most 3000
entities, we sampled six Google Scholar pages by varying
the number of tuples from 500 to 3000. For Amazon, we picked
five categories with error rate 40% and varied the number of
entities from 2000 to 10000. Figure 9 shows the running time.

Our algorithms were faster than CR and SVM. The reason is
that, in each iteration, CR needed to re-evaluate the attribute
distance and reference distance between two groups and
selected the closest pair to merge. It was time-consuming,

Scholar, #-tuple Basic Fast EM_0.6 SVM
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Jiawei_3000 11 2.3 166 99

Amazon, #-tuple

Beauty/File43_2,000 11 0.9 106 293

Home & Kitchen/File33_4,000 30 5 323 507
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Fig. 9. Efficiency

especially the size of dataset was large. As for SVM, we used
part of the dataset as training data and the remaining dataset
as testing data. It took lots of iterations for many entities.
Impact of Indices. With the signature-based framework, the
efficiency was significantly improved. As shown in Figure 9,
DIME` was 2-10x faster than DIME. For Google Scholar,
when there were 3000 entities, the runtime of DIME was 11
seconds, but 2.3 seconds for DIME`. For Amazon, when there
were 10000 entities, the runtime of DIME was 936 seconds,
but 77 seconds for DIME`. The results showed the superiority
of our pruning techniques.

In reality, the size of group is unlikely to be so large after a
former cluster algorithm. But we still utilized a data generator
DBGen (http://www.cs.utexas.edu/users/ml/riddle/data) to gen-
erate some large groups with the number of entities from 20k
to 100k to test the efficiency of our algorithms. We used two
positive entity matching rules and two negative entity matching
rules and the results are shown in the Table below. We can
see that our signature-based algorithm DIME` can run for 100k
entities in 175s, which is 15x faster than DIME.

Genp20kq Genp40kq Genp60kq Genp80kq Genp100kq
DIME 430 619 891 1723 2610
DIME` 39 52 69 133 175

Exp-6: Comparison with Rule Generation Methods. We
compared our greedy rule generation algorithm DIME-Rule
with existing ML methods DecisionTree and heuristic-based
approach SIFI. We made cross validation on the training
set, and Figure 10 reported F-measure values by varying the
number of folds. Note that for SIFI, we asked an expert
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Partition Size r1, 10q r10, 100q r100, 1000q
#-groups #-entities #-errors #-groups #-entities #-errors #-groups #-entities #-errors

Divyakant 104 147 104 2 35 21 2 480 0
Jeffrey 1608 2334 2234 8 158 148 2 508 199
Wenfei 224 348 307 3 138 0 0 0 0
Nan 51 65 55 4 52 11 0 0 0
Cong 50 78 46 2 67 0 0 0 0
Zhifeng 30 48 23 1 50 0 0 0 0
Francesco 60 74 29 2 45 0 1 111 0
Samuel 64 93 18 3 136 0 0 0 0
Tamer 123 173 28 4 75 0 1 109 0
Juliana 64 93 21 3 47 0 1 137 0
Ullman 177 220 40 5 97 0 1 223 0
Anhai 36 45 9 2 102 0 0 0 0
Divesh 67 95 29 2 50 0 1 369 0
Gustavo 116 161 27 8 268 0 0 0 0
Jennifer 71 88 18 2 73 0 1 162 0
Torsten 20 30 4 1 50 0 0 0 0
Marcelo 62 107 8 3 95 0 0 0 0
Nikos 41 76 9 1 55 0 0 0 0
Tim 10 10 3 1 75 0 0 0 0
Laks 64 99 6 4 58 0 1 96 0

TABLE I
EFFECT OF POSITIVE RULES

Scholar Our SIFI Tree

Number of Folds F-measure F-measure F-measure

2 0.973 0.956 0.891

3 0.977 0.957 0.891

4 0.978 0.961 0.891

5 0.977 0.959 0.909

6 0.978 0.961 0.891

7 0.976 0.953 0.862

8 0.976 0.958 0.889

9 0.974 0.957 0.877

10 0.973 0.960 0.898

Amazon Our SIFI Tree

Number of Folds F-measure F-measure F-measure

2 0.957 0.906 0.831

3 0.957 0.915 0.823

4 0.958 0.909 0.825

5 0.957 0.919 0.823
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Fig. 10. Effectiveness of Rule Generation

to formulate the structure of rules who was familiar with
similarity functions and our datasets. Figure 10 shows that
our method can get higher F-measure than DecisionTree

and SIFI. DecisionTree failed to find the optimal similarity
functions with considerable depth when there were a lot of
options, and in SIFI, it was hard for expert to always provide
the optimal structure of rules and suitable similarity functions.

VII. CONCLUDING REMARKS

We have proposed a new problem that discovers mis-
categorized entities. We have presented a general rule-based
framework to solve this problems in different applications. We
have also proposed a signature-based algorithm to efficiently
apply the rules. We have demonstrated both the effectiveness
and efficiency of our approach using real-world datasets.
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